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Abstract 

Background  Crowding has been a longstanding issue in emergency departments. To address this, a fast-track sys-
tem for avoidable patients is being implemented in the Paediatric Emergency Department where our study is con-
ducted. Our goal is to develop an optimized Decision Support System that helps in directing patients to this fast track. 
We evaluated various Machine Learning models, focusing on a balance between complexity, predictive performance, 
and interpretability.

Methods  This is a retrospective study considering all visits to a university-affiliated metropolitan hospital’s PED 
between 2014 and 2019. Using information available at the time of triage, we trained several models to predict 
whether a visit is avoidable and should be directed to a fast-track area.

Results  A total of 507,708 visits to the PED were used in the training and testing of the models. Regarding the out-
come, 41.6% of the visits were considered avoidable. Except for the classification made by triage rules, i.e. consider-
ing levels 1,2, and 3 as non-avoidable and 4 and 5 as avoidable, all models had similar results in model’s evaluation 
metrics, e.g. Area Under the Curve ranging from 74% to 80%.

Conclusions  Regarding predictive performance, the pruned decision tree had evaluation metrics results that were 
comparable to the other ML models. Furthermore, it offers a low complexity and easy to implement solution. When 
considering interpretability, a paramount requisite in healthcare since it relates to the trustworthiness and transpar-
ency of the system, the pruned decision tree excels.

Overall, this paper contributes to the growing body of research on the use of machine learning in healthcare. It 
highlights practical benefits for patients and healthcare systems of the use ML-based DSS in emergency medicine. 
Moreover, the obtained results can potentially help to design patients’ flow management strategies in PED settings, 
which has been sought as a solution for addressing the long-standing problem of overcrowding.
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Introduction
Emergency Department (ED) crowding occurs when 
demands are greater than the hospitals’ capacity to 
ensure timely care in the ED. This is a multifactorial 
problem with multiple solutions. These problems can be 
tackled by influencing demand e.g., implementing gate-
keeping policies, or optimizing the service provided. Fur-
thermore, ED overcrowding and high patient volumes 
can result in delays in care, suboptimal treatment deci-
sions, and increased risk of adverse events, including 
mortality, both in paediatric and adult settings [1–3]. To 
address these challenges, various approaches have been 
proposed. One of the most studied is the alteration of 
patient flow i.e., the implementation of fast tracks, based 
on the severity of the patients’ condition. This approach 
have shown to be able to improve both efficiency and 
outcomes, as well as reducing waiting times and over-
crowding [4, 5].

Accessing the patients’ severity i.e. the identification of 
clinically divertible attendances or clinically unnecessary 
attendances patients [6], to be steered to fast tracks, has 
been made mostly using triage levels [7–10] or empirical 
rules [11]. The validity and accuracy of the identification 
of these avoidable visits is paramount [12], since it evolves 
not only patient flow efficiency but also patient safety. On 
the other hand, the emergence of robust machine learn-
ing (ML) algorithms has shown potential to improve pre-
dictive ability of various outcomes [13–16], which in turn 
could be leveraged to aid in the identification of these 
avoidable visits [16, 17].

In the hospital this study is being conducted, the Pae-
diatric Emergency Department (PED) is undergoing 
restructuring, which includes the introduction of a fast-
track system. Consequently, there’s a need to develop 
an algorithm to identify patients who are suitable for 
this expedited care pathway. A system that identifies 
these patients accurately has the potential to reduce 
the amount of time patients spend in the ED, reducing 
departmental crowding and ultimately support better 
patient outcomes. It will also, in all likelihood, help the 
reduction of ED overcrowding and facilitate a more effec-
tive allocation of healthcare resources.

Hence, we aim to create a data-driven, optimized DSS 
to aid in the selection of patients deemed avoidable and 
redirect them for a fast track. To achieve this, we com-
pared different ML models and approaches, considering 
the balance between implementation complexity, predic-
tive performance, and interpretability.

Methods
Study design, setting and participants
This study was an observational and retrospec-
tive research, conducted in a university-affiliated 

metropolitan hospital’s PED. The hospital serves a popu-
lation of about 800,000 and receives an average of 76,000 
visits annually from an estimated 137,016 children or 
adolescents aged 0 to 17 years [18].

In the PED, there are 4–5 physicians and 7–8 nurses, 
working in 12-h shifts to ensure 24/7 coverage.

In this study, all presentations made to the hos-
pital’s PED (i.e., from 0 to 17  years old) in a 4-year 
period (between 01/Jan/2016, and 31/Dec/2019) were 
considered.

The PED nursing team triages visitors according to 
the Canadian Triage and Acuity Scale paediatric guide-
lines (PaedCTAS), which is structured around evaluating 
physiological factors, including appearance, neurological 
status, respiratory rate, heart rate, and perfusion, along-
side presenting symptoms to determine triage levels. 
Similar to the adult version of the Canadian Triage and 
Acuity Scale (CTAS), the PaedCTAS delineates five lev-
els of triage i.e. Level 1(Red)—“Resuscitation”, Level 2 
(Orange)—“Emergent”, Level 3 (Yellow)—“Urgent”, Level 
4 (Green)—“Less Urgent” and Level 5 (Blue)—“Non 
Urgent”. These levels reflect the severity and urgency of 
the patient’s condition, target times for medical assess-
ment and intervention, and provide examples of typical 
clinical presentations and critical diagnoses [19].

This paper follows the structure presented in the 
RECORD statement i.e. The REporting of studies Con-
ducted using Observational Routinely-collected health 
Data [20].

PED restructuring
The hospital’s PED is undergoing a significant restruc-
turing.. Along with this restructuring, a fast track for 
avoidable patients is to be implemented. A schema of the 
fast-track configuration is presented in Fig. 1.

Data collection
All patient data is registered using a proprietary infor-
mation system called JOne, where events are logged e.g. 
attending medical staff, diagnoses and cause of admis-
sion. All sociodemographic information and triage pro-
cedures are also registered in this information system.

All data access permissions, i.e., from the hospital 
board of directors, hospital epidemiology centre, infor-
mation access officer and ethical committee were granted 
for this study. [FMUP 180/18].

Outcome
The dependent variable was defined by the conjunction 
of several PED markers, resulting in a restrictive defini-
tion of avoidable. A PED visit is considered avoidable if 
the patient is discharged home and no diagnostic tests 
(i.e., blood tests and radiology exams), procedures or 
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medications were required during the stay. The patients 
were also not asked to stay in the ED, for the physician 
to better assess the condition’s evolution. In summary, 
an avoidable visit is done by a patient that only has con-
tact with the physician and is discharged home. The 
bullet list below summarizes the approach taken in the 
construction of the outcome to be predicted.

•	 Avoidable visit;

◦ The patient was not medicated
◦ The patient did not undergo any radiologic 
exams
◦ The patient did not undergo any blood analysis
◦ The patient did not stay for observations
◦ The patient was discharged home

Predictors and feature selection
A list of variables known at the time of the patient’s tri-
age were used as predictors. Feature selection was done 
on a model-by-model basis, since associations between 
variables, redundant variables and low variance vari-
ables are handled differently depending on the model.

•	 Age
•	 Sex
•	 Season – Season of the year of patient’s arrival to 

the PED
•	 Month – Month of the year of patient’s arrival to 

the PED
•	 Day of week –weekday of the patient’s arrival to the 

PED
•	 Hour of day – Time of day of patient’s arrival to the 

PED, in. hourly slots

•	 Pretriage discriminator group –Paediatric Assess-
ment Triangle group selection as described in Pae-
dCTAS [19]

•	 Pretriage discriminator –Paediatric Assessment Tri-
angle selection as described in PaedCTAS [19]

•	 Main complaint group—Triage complaint group as 
described in PaedCTAS [19]

•	 Main complaint discriminator – Triage complaint as 
described in PaedCTAS [19]

•	 Residence municipality – patient’s residence, munici-
palities outside the catchment area were residual and 
were grouped as other

•	 Triage level – PaedCTAS level of triage
•	 Referral – A referral patient was defined as ‘not walk-

in’ patient e.g. referral from PCP, private clinic or 
other hospitals

•	 Made return visit X hours prior- Patient made at 
least one visit to the PED X (i.e.12, 24, 48, 72) hours 
prior to current visit i.e. the current visit is a return 
visit

•	 Visit by frequent attender – Visit made by frequent 
attender i.e. > 4 visits per year

Machine learning models
Several ML models were created to evaluate the appro-
priateness for implementation in this context. These 
models ranged from simple rules, based on triage level 
(i.e. visits triaged levels 1, 2 and 3 are directed to regu-
lar emergency department patient flow while visits tri-
aged levels 4 and 5 are directed to fast track), to a neural 
network. The appropriateness involved three dimensions: 
(1) complexity, some models could be implemented as 
simple rules, others need to be integrated into the hospi-
tal’s information system; (2) interpretability, can the rea-
soning behind the decision be understood i.e., glass box 

Fig. 1  Schema of the restructuring of the Paediatric Emergency department regarding avoidable patient flow
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model or not i.e., black box, and (3) predictive perfor-
mance. All the models used in this study and their clas-
sifications are enumerated in Table 1.

The ML models tested have very different character-
istics and some have parameters that are set in advance 
and control various aspects of the training process itself 
i.e. hyperparameters. These hyperparameters can be 
changed, and the performance of the models evaluated in 
a process called hyperparameter tunning. As an example, 
and considering decision trees, cost complexity is used 
for pruning the tree to avoid overfitting. It adjusts the 
trade-off between accuracy (and possible overfitting) and 
tree simplicity.

The default threshold of 0.5 for binary classification 
was kept for all the models.

Data preparation and model training
The dataset was randomly split 20% for testing and 80% 
for training with stratification for the outcome. On the 
training set, it was used a 2-fold cross validation with 
stratification for the outcome, repeated 20 times.

All categorical missing values were imputed the cate-
gory “unknown”, there were no missing numerical data. 
Only the variables “Pretriage discriminator” and “Pretri-
age discriminator group” had an expected, and relevant 
missing count (96.7%). These variables are only filled in 
particular circumstances during the triage algorithm. 
All other categorical variables had negligible (> 0.5%) of 
missing count.

For tensor flow model and the XGboost model, dummy 
variables were created i.e., one binary numeric variable 
was created for each category. Furthermore, the vari-
able “Triage maincomplaint discriminator” was removed 
from the simple tree model because it has too many cat-
egories (217) and would be unusable in the paper-based 

approach. To mitigate complexly, the tree depth maxi-
mum was also set to 5 in hyper parameter tuning phase. 
The variable “Triage maincomplaint discriminator” was 
also removed from the logistic regression model, as some 
levels had only a small number of observations and the 
information was already aggregated in the variable “Main 
complaint group”.

All the data analysis was performed using R ver-
sion 4.2.2 (2022–10-31) [23]. The integrated devel-
opment environment (IDE) used was RStudio 
Version 2022.12.0 + 353 [24]. The ecosystem of packages 
“tidymodels” was used. The specific packages used for 
training the ML models are underlined in Table 1.

Models’ evaluation
The evaluation metrics used in our study to compare the 
performance of different machine learning methods are 
enumerated below. Accuracy (accuracy), Negative Pre-
dictive Value (npv), Positive Predictive Value (ppv), Sen-
sitivity (sens) Specificity (spec), Kappa (kap), Area Under 
Curve (roc_auc) and F-measure (F_meas) that combines 
ppv and sensitivity, providing a single score that reflects 
both aspects of a model’s performance. Furthermore, 
False Positives (FP) i.e., non-avoidable visits classified as 
avoidable, False Negatives (FN) i.e. avoidable visits clas-
sified as non-avoidable, True Positives i.e. visits classified 
correctly as avoidable and True Negatives (TN) i.e. visits 
classified correctly non-avoidable were also computed for 
each model.

Results
The dataset utilized for training and testing the mod-
els comprised a total of 507,708 visits to the pediat-
ric emergency department. Of these visits 17.4% were 
referrals, and 4.4% resulted in hospital admissions. 

Table 1  List of classifications models used to predict if a visit to the Paediatrics emergency department is avoidable and should be 
directed the fast-track area

1 Visits triaged Red/Orange/yellow are directed to regular emergency department patient Flow and Green/Blue visits are directed to fast track. HIS – hospital’s 
information system
2 Tree depth, complexity, and the use of variables with many categories was taken into consideration to keep the tree simple and therefore applicable in the fast-
paced context of triage

Model Type Interpretability Implementation R Package

Split made by triage levels1 Rules Glass box Paper based Base R

Simple classification tree2 Tree based Glass box Paper based rpart

Logistic regression Regression Glass box Integrated in HIS glm

Naive bayes Bayesian Glass box Integrated in HIS klaR

Complex classification tree Tree based Glass box Integrated in HIS rpart

Random forest Tree based ensemble Black box Integrated in HIS ranger

XGboost [21] Tree based ensemble Black box Integrated in HIS xgboost

Tabnet [22] Deep learning Black box Integrated in HIS torch

Tensor Flow through Keras Deep learning Black box Integrated in HIS keras
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Females accounted for 46.8% of the visits. The average 
age of patients was 7 years, with a standard deviation of 
5.5 years. The mean length of stay was 102.4 min, with a 
standard deviation of 154.5 min. Regarding the outcome, 
41.6% of the visits were considered avoidable. Concern-
ing triage levels, 0.2% were triaged level 1, 5.6% level 2, 
39.4% level 3, 50.4% level 4 and 4.5% level 5.

Models’ performance
Considering the metrics that evaluate the models glob-
ally i.e. accuracy, f_meas, kap and roc_auc, all ML mod-
els outperformed the classification made by triage rules 
i.e. visits triaged levels 1 (red), 2 (orange) and 3 (yellow) 
were considered non-avoidable and visits triaged levels 
4 (green) and 5 (blue) were considered avoidable. Except 
for the classification made by triage rules, the models 
had similar performance, namely accuracy, ranging from 
70 to 72% and AUCs ranging from 74 to 80%. However, 
regarding measures that evaluate the specific perfor-
mance i.e., NPV, PPV, sensitivity and specificity, there 
is greater variation Moreover, the triage rules model 
was also outperformed by the all ML models in terms 
of measures addressing specific performance, except for 
sensitivity.

Predictions on test data
For a more pragmatic and in-depth analysis and drilling 
down from Figs.  2  and  3 presents a confusion matrix’s 
inspired plot, where the model’s classifications are com-
pared. This visualization enables us to calculate, for a 
particular number of visits, how many are correctly clas-
sified and misclassified, for any given model. It is impor-
tant to highlight the low FP proportion of all ML models 
and the high TN proportion, with relatively small differ-
ences between them. On the other hand, the classifica-
tion made by triage rules had the highest FP proportion 
and the lowest TN proportion. The FN rate and the TP 
rate were relatively constant across all models.

Simple classification tree
When constructing the model for the simple classifica-
tion tree, the hyperparameter tunning was limited to a 
tree depth of 5. Fig.  4 shows that above a tree depth of 
4 there is no significant improvement in overall perfor-
mance i.e., accuracy and AUC. Furthermore, when the 
value of cost complexity decreases, sensitivity increases.

Figure  5 presents a decision tree with the hyperpa-
rameters set to: tree depth of 4 and a cost complexity of 
1e-4. This combination was chosen for the best balance 
between sensitivity and specificity, not having a signifi-
cant impact on overall performance i.e., accuracy and 
AUC. This particular tree only used the triage’s “Main 
complaint group” and triage level.

Discussion
The major objective of this study was to evaluate several 
ML models to be implemented in the PED and aid in the 
decision if a visit to the Paediatrics emergency depart-
ment is avoidable and should be directed to the fast-track 
area or is non-avoidable and can stay in the regular flow.

To the best of our knowledge, the assignment of visits 
to a low acuity fast track is mostly done by the assigned 
triage levels and there are no studies with a pragmatic 
focus on implementation with data-driven approaches. 
[7–10, 16, 25, 26].

Our approach was to leverage the power of ML to 
aid in the assignment for the fast-track. First, creating 
an outcome based on resource utilization and PED dis-
charge destination. And afterwards trying to predict it 
using information known at the time of triage.

Summary of main findings
Regarding overall performance metrics, all ML models 
had similar performance and outperformed the classifi-
cation made by triage rules. Drilling down, errors made 
by triage rules were mainly false positives, i.e. non avoid-
able patients sent to the fast track.

The pruned decision tree performed only slightly worse 
in the overall metrics than all the other ML models and 
their errors in classification went in the same direction 
as the other more complex models, as can be seen when 
analysing sensitivity, specificity or the confusion matrix.

Results contextualization
This study’s results regarding AUC were slightly higher 
than those found by Chang et  al. who made a similar 
study using ML to identify low-severity patients. How-
ever, the definition of candidates for fast track was the 
time interval between the triage registry and being dis-
charged within less than 4 h. Therefore, depending on the 
setting, this could be a problem, since the length of stay 
is greatly influenced by the triage level and the hour of 
the day. Hence, we think that this study’s approach, only 
considering resource usage and discharge destination, 
appears less prone to confounders [27].

In a study by Kwon et  al. [28] where the aim was to 
identify high-risk patients at the time of triage, the ML 
algorithm predicted in-hospital mortality, critical care, 
and hospitalization more accurately than existing tri-
age systems. When considering only hospitalization, the 
results are very similar to our study [28]. Despite the dif-
ferent outcomes, these results support the superiority 
of ML models over triage system’s classification to pre-
dict outcomes in the ED. This is further reinforced and 
expanded by the results of a systematic review by Kareen 
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et al. where it was found that in an ED setting, ML mod-
els outperformed usual care in most diagnostic and prog-
nostic predictions across all studies [16].

It is essential to consider the FP values for each 
model, i.e., visits that the models classified as avoida-
ble that really were not avoidable. While false negative 
(FN) proportion, i.e., visits that the models classified 

as non-avoidable that were avoidable, are directed to 
the previous patient flow, a high FP proportion might 
be a reason for concern since they are non-avoidable 
visits directed to the fast track. In this regard, the split 
made by triage rules is a reason for worry, since its FP 
proportion doubles the highest ML model. This high-
lights the necessity to include all relevant stakeholders 

Fig. 2  Bar plot with error bars, comparing the performance of the predictive models used to classify if visit to the Paediatrics emergency 
department is avoidable, and should be directed the fast-track area, by metric. Results were obtained from the twofold cross validation 
with stratification for the outcome, repeated 20 times
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(e.g. physicians, nurses, administrative personnel and 
patients) in the development of the DSS and is vital to 
its successful implementation, as only these stakehold-
ers know the particularities of the context where the 

DSS is to be deployed. The ML models should be eval-
uated considering not only the performance metrics 
but also potential clinical consequences and impact on 
patient outcomes [16, 29].

Fig. 3  Percentage of visits, for each model, incorrectly assigned to the fast-track i.e., non-avoidable classified as avoidable (FP), incorrectly assigned 
to normal flow i.e. avoidable classified as non-avoidable (FN) and percentage of visits classified correctly, either avoidable (TP) or non-avoidable 
(TN). Data was obtained from the test dataset when the models were fitted

Fig. 4  Plots with the results from a grid hyperparameter tunning for the simple decision tree. Each plot refers to a specific tree depth. Metric’s mean 
is the result of a twofold cross validation repeated 20 times
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Implications for policy and practice
To discuss the choice of the model to be implemented 
is necessary to return to the three evaluation dimen-
sions stated in the introduction: complexity, predictive 
performance, and interpretability. The pruned decision 
tree is very simple to implement. Based on two or three 
simple rules, a nurse at the end of triage could redirect 
the patient with minimal increased logistic burden. As 
a consequence of its simplicity, the time to implementa-
tion and cost is negligible. Regarding the performance 
assigning patients to a fast track based on triage levels is 
clearly not the best solution, given the high proportion 
of FP. Despite not being the best model, the pruned deci-
sion tree is outperformed by other more complex models 
but only by a few percentage points. The last dimension 
is extremely important and goes beyond interpretation, it 
relates the understanding to how the decision was made, 
and if the explanation is satisfactory, it builds trust [30]. 
And a trustworthy and explainable system has been a 
stakeholder requisite, especially in healthcare [31, 32]. 
In this regard, rules extracted from a low-depth decision 
tree excels.

The choice of the model was clear. The pruned deci-
sion tree could be implemented immediately, and the 
patients and staff could immediately reap the rewards of 
an improved PED workflow. The resources committed to 
the implementation are low, hence can be easily replaced 
if a better alternative is developed.

Limitations
The definition of avoidable visit was chosen among oth-
ers [6, 33, 34] for being triage system agnostic, better 

reflecting the visit’s lack of necessity for the hospital’s 
resources. Nevertheless, the multiple definitions used in 
the field make comparisons less accurate.

There are few clinical parameters available for model 
building. Nevertheless, if more variables were to be col-
lected and used, the model’s performance could never 
worsen.

The data gathered had the original purpose of provid-
ing care to the patients in the PED, therefore subjected 
to the bias of any observational study based on routinely 
collected data, e.g. information system downtime and the 
inability to control how the variables are collected.

The deployment phase will present challenges and 
model’s suggestions might have to be adapted the day-to-
day operations and decision-making processes in clinical 
settings.

External validity of the models was not tested. How-
ever, given the intended use of the models, it’s crucial to 
consider both the target population and the setting. Thus, 
if this study were to be conducted in different settings or 
with different populations, the models would need to be 
retrained with the data available [35].

Conclusions
This study demonstrates the substantial potential of ML 
models to enhance decision-making processes in Emer-
gency Departments, regarding the assignment of patients 
to appropriate care paths. Our findings underscore the 
superior performance of ML models over more tradi-
tional methods in determining the patient flow. While 
all tested ML models performed well, the pruned deci-
sion tree model emerged as a practical choice due to its 

Fig. 5  Decision tree with the hyperparameters set to tree depth of 4 and a cost complexity of 1e-4, for the classification of visits as avoidable 
(Yes) or non-avoidable (No), and redirection to a fast track or regular flow respectively, in the Paediatric emergency depart. This tree was created 
from the test dataset
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simplicity, ease of implementation, and relatively high 
accuracy. Moreover, this model supports the need for 
interpretable and trustworthy systems in healthcare, as 
it allows healthcare providers to understand and trust 
the basis of its predictions. Moving forward, the inte-
gration of ML into clinical settings should continue to 
focus on balancing complexity, predictive performance, 
and interpretability, ensuring that such tools are not 
only technically effective but also align with the practi-
cal realities and ethical considerations of medical prac-
tice. Finally, the obtained results can potentially help to 
design patients’ flow management strategies in PED set-
tings, which has been sought as a solution for addressing 
the long-standing problem of overcrowding.

More data-driven approaches, where the patient and 
healthcare professionals are put first and technology 
serves an instrumental role in solving the problem, are 
necessary in this age of AI hype. Small, targeted interven-
tions to solve real-world problems with real-world data 
are paramount to the future of healthcare.
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