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SYSTEMATIC REVIEW

Improving triage performance in emergency 
departments using machine learning 
and natural language processing: a systematic 
review
Bruno Matos Porto1* 

Abstract 

Background In Emergency Departments (EDs), triage is crucial for determining patient severity and prioritizing 
care, typically using the Manchester Triage Scale (MTS). Traditional triage systems, reliant on human judgment, are 
prone to under-triage and over-triage, resulting in variability, bias, and incorrect patient classification. Studies suggest 
that Machine Learning (ML) and Natural Language Processing (NLP) could enhance triage accuracy and consistency. 
This review analyzes studies on ML and/or NLP algorithms for ED patient triage.

Methods Following Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, we 
conducted a systematic review across five databases: Web of Science, PubMed, Scopus, IEEE Xplore, and ACM Digital 
Library, from their inception of each database to October 2023. The risk of bias was assessed using the Predic-
tion model Risk of Bias Assessment Tool (PROBAST). Only articles employing at least one ML and/or NLP method 
for patient triage classification were included.

Results Sixty studies covering 57 ML algorithms were included. Logistic Regression (LR) was the most used model, 
while eXtreme Gradient Boosting (XGBoost), decision tree-based algorithms with Gradient Boosting (GB), and Deep 
Neural Networks (DNNs) showed superior performance. Frequent predictive variables included demographics 
and vital signs, with oxygen saturation, chief complaints, systolic blood pressure, age, and mode of arrival being 
the most retained. The ML algorithms showed significant bias risk due to critical bias assessment in classification 
models.

Conclusion NLP methods improved ML algorithms’ classification capability using triage nursing and medical notes 
and structured clinical data compared to algorithms using only structured data. Feature engineering (FE) and class 
imbalance correction methods enhanced ML workflows’ performance, but FE and eXplainable Artificial Intelligence 
(XAI) were underexplored in this field.

Registration and funding.

This systematic review has been registered (registration number: CRD42024604529) in the International Prospective 
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Introduction
In the Emergency Department (ED), patient care begins 
with triage, which is a preliminary clinical assessment 
performed to identify the severity of the patient’s health 
condition before diagnostic and therapeutic evaluation 
[1, 2]. Triage is essential for identifying patients who 
require urgent care and must be attended to immediately 
[1, 3]. The most commonly used emergency triage sys-
tems employ five-level priority scales associated with the 
patient’s condition, such as the Korean Triage and Acuity 
Scale (KTAS), Emergency Severity Index (ESI), and Man-
chester Triage Scale (MTS) [4].

Traditional triage systems are widely adopted in EDs 
to prioritize patients and efficiently allocate available 
resources [3, 5–9]. However, some studies report under-
triage (which occurs when a patient is not classified at the 
severity level corresponding to their condition, resulting 
in increased morbidity, mortality, and costs) [10–12] and 
over-triage (when less urgent patients are designated for 
urgent care, diverting resources from patients who genu-
inely require such care) [11–13] as frequently occurring 
phenomena [9, 11, 14].

The use of triage scales depends on human judgment, 
which can result in high variability and individual bias, 
affecting the accuracy of the assessment [3, 15, 16]. 
Studies report that some triage systems, such as the 
ESI, exhibit suboptimal predictive capacity for identify-
ing severely ill patients, as well as low inter-rater agree-
ment, high variability within the same triage level [5, 11, 
14, 17], and a predominance of classifying patients at the 
medium acuity level [11, 18].

Incorrect patient classifications are common in tra-
ditional triage systems [4, 9, 12] and result in issues in 
EDs such as: (i) overcrowding [19]; (ii) under-triage; (iii) 
over-triage; (iv) failures to identify patients with cardiac 
events [4]; (v) increased safety risks, patient wait times, 
and deterioration in the quality of care [2, 19]; and (vi) a 
high degree of variability in triage assignment by nurses 
within the same region [16]. This context creates the 
need for more accurate classification of patient condi-
tions at the time of triage, which can be achieved through 
Machine Learning (ML) and Natural Language Process-
ing (NLP) [11, 14, 15]. An effective strategy to improve 
triage systems and support nurses’ decision-making in 
patient stratification is the use of ML models [4].

Various ML models have been used in patient triage 
classification, including both multiclass classification [8, 

20–22] and binary classification [23–25]. ML has dem-
onstrated high performance in predicting various clinical 
outcomes, such as hospital admissions [26–29], critical 
care in patients with chest pain [30], patients with sepsis 
[31–33] and patient no-shows for medical appointments 
[34].

Predominant models in the literature include Logistic 
Regression (LR) [6, 24] and Random Forest (RF) [17, 35]. 
High-performance models include eXtreme Gradient 
Boosting (XGBoost) [8, 12] and Deep Neural Networks 
(DNNs) [36, 37]. Studies have shown high performance 
in triage prediction [9, 15] using ML with structured 
patient triage variables. Recently, incorporating triage 
clinical notes has demonstrated improved ML classifica-
tion performance based on NLP [6, 10, 13, 37–41], high-
lighting the advantage of combining both approaches to 
achieve superior performance.

NLP uses computational models to analyze human 
language, its structure, and meaning [6, 42]. Initially, in 
patient triage, NLP methods were simple (e.g., Bag-of-
Words [43, 44]), considering the relative frequencies of 
words in triage notes, ignoring word order and context 
[43]. More recent NLP methods based on DNNs process 
triage notes through layers of neural networks, provid-
ing more complex representations of the data [13, 37, 
39]. Another advanced method used in the field is Bidi-
rectional Encoder Representations from Transform-
ers (BERT), a model pre-trained on large text datasets, 
applied in patient triage prediction [45–47]. Recent 
studies have employed the Chat Generative Pre-trained 
Transformer (ChatGPT) model [48, 49] for patient triage. 
This study describes the methods and evaluates the per-
formance of NLP applications on unstructured free-text 
triage notes.

Three systematic reviews [1, 18, 50] and one literature 
review [19] on ML models for triage highlight the perfor-
mance of XGBoost and Gradient Boosting (GB), with LR 
showing inferior performance. Previous reviews focused 
on various algorithms for disease predictions, hospital 
admissions, and triage, but only one concentrated on ED 
triage, limited to a two-year period. The current review 
addresses multiclass patient classification, crucial for 
the efficient allocation of human and material resources 
in EDs [19], and explores less-discussed aspects: feature 
selection, feature engineering (FE), eXplainable Artificial 
Intelligence (XAI), class imbalance correction, and par-
ticularly the use of NLP, which are essential for improving 
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the performance of ML algorithms. FE involves creating 
new features based on domain knowledge or exploratory 
analysis of available data [51], while XAI refers to sys-
tems that provide transparent and understandable expla-
nations of their processes, making it easier for users to 
comprehend how the ML model functions and why spe-
cific outcomes are produced [52].

In this work, 60 original studies were comprehensively 
analyzed, with the objective of systematically review-
ing studies that employed ML and/or NLP methods for 
classifying the triage of adult and pediatric patients in 
EDs. The studies were organized based on their main 
characteristics: (i) quality assessment and risk of bias, (ii) 
ML and NLP methods used, (iii) variable selection, FE, 
and resampling techniques, (iv) predictors tested, and 
(v) performance metrics. The main findings include: (i) 
ML models exhibited a high risk of bias when evaluated 
using the Prediction Model Risk of Bias Assessment Tool 
(PROBAST) [53], (ii) NLP enhanced the performance of 
ML algorithms in predicting patient triage, (iii) FE and 
XAI approaches were underutilized in this field, (iv) the 
most commonly used and retained predictor variables 
were identified, (v) the classification performance was 
assessed using key metrics, and (vi) an overview of the 
methods employed in the ML workflow was provided. 
This review underscores the need for more robust and 
explainable approaches in the development and evalua-
tion of predictive models for patient triage.

Materials and methods
In the literature, ML algorithms have been widely used 
in recent years, being the subject of three systematic 
reviews [1, 18, 50] and one literature review [19]. How-
ever, a comprehensive understanding of the five aspects 
is lacking: feature selection, FE, XAI, class imbalance cor-
rection, and particularly the use of NLP. The previous 
reviews were summarized in Table 1 to identify the unex-
plored aspects. These aspects are fundamental, as they all 
impact the performance of ML models, and the quality of 
the predictions made in the studies.

The methodological steps used to conduct the sys-
tematic review included: (i) registering the systematic 
review protocol in PROSPERO, (ii) applying the prede-
fined inclusion and exclusion criteria, (iii) following the 
Preferred Reporting Items for Systematic Review and 
Meta-Analysis (PRISMA) 2020 guidelines to ensure a 
comprehensive and transparent reporting of the review 
process, (iv) formulating research questions using the 
Participants, Intervention, Comparison, Outcome, Study 
Design (PICO-SD) format [54], followed by a search 
strategy conducted across five databases, covering the 
period from the inception of each database until Octo-
ber 2023, (v) extracting and synthesizing data from the 

included studies to answer the research questions, (vi) 
analyzing the risk of bias using the PROBAST tool to 
ensure the validity and applicability of the predictive 
models, and (vii) performing a sensitivity and ROC-AUC 
analysis to assess the robustness of the findings.

Inclusion and exclusion criteria
The primary outcome was defined as the triage-levels 
of patients (multiclass classification), while the second-
ary outcome was the triage of critical patients, including 
mortality or admission to the intensive care unit (binary 
classification). This review covers ML and/or NLP meth-
ods for the classification of patient triage in EDs. The fol-
lowing criteria presented in Table  2 were used to select 
the studies.

Research questions
We analyzed studies that applied ML and/or NLP meth-
ods for patient triage classification to answer the research 
questions outlined in Table  3. These research questions 
were developed following the PICO-SD format [54]. 
Specifically, the patient/population/problem refers to 
patients in the ED. The intervention refers to the use 
of ML algorithms or NLP methods for patient triage 
in the ED. The comparison involves at least one ML or 
NLP method for patient triage, either with or without a 
comparison to conventional triage systems, such as the 
ESI or MTS. The outcomes focus on triage of severely ill 
patients, including mortality, admission to the intensive 
care unit (ICU), and triage levels. Finally, the study design 
includes both retrospective and prospective studies.

Search strategy and registration
This study followed the PRISMA 2020 protocol [55] to 
select studies based on the defined criteria. PRISMA is 
used to address the three research questions in Table 3. 
The steps of the PRISMA checklist are detailed in 
Table A1, in Appendix A. This systematic review is reg-
istered with the International Prospective Register of Sys-
tematic Reviews (PROSPERO) and is available for access 
online at the following URL: https:// www. crd. york. ac. 
uk/ prosp ero/ displ ay_ record. php? Recor dID= 604529. The 
protocol has been registered on PROSPERO (registration 
number CRD42024604529).

First, Medical Subject Headings were used to define 
keywords related to the topic. Next, the databases Web of 
Science, PubMed, Scopus, IEEE Xplore, and ACM Digital 
Library were selected to search for studies published up 
to October 2023. Searches in the five databases were ini-
tially conducted on July 20, 2023, and the last search was 
on October 13, 2023.

The databases were selected based on four main cri-
teria: (i) Web of Science and IEEE Xplore were excluded 
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from previous reviews; (ii) Scopus was used in only one 
review [1] covering 2 years (2018–11/2020); (iii) PubMed 
was chosen for its extensive coverage in medicine and 
health informatics, including access to MEDLINE; and 
(iv) IEEE Xplore and ACM Digital Library are leading 
databases in the field of NLP and ML.

The screenings and full-text evaluations were per-
formed independently by the researchers, following 
the criteria and extracting data using a standardized 
form (Table  A2). Conflicts were resolved by discussion 
between the researchers. It was not necessary to contact 
the authors of the included studies. The search strings 
used are listed in Table  4. Additional references were 
retrieved from the reference lists of key reviews [1, 18, 19, 
50] for analysis.

Study selection
For the review, we used the participants and interven-
tions from the PICO-SD framework as search criteria. 
Initially, 2,292 results were identified across five data-
bases. After excluding articles not published in journals, 
not in English, and 241 duplicates, 668 remained for 
screening. Ninety-three were excluded due to their titles 

being out of scope, leaving 575 articles. Of these, 352 did 
not report the clinical outcomes of interest. The main 
focus of these excluded articles is shown in Fig.  1. Two 
hundred twenty-three articles were retained for full-text 
reading, of which 167 were removed for dealing with 
ML or NLP related to hospital admission, chest X-rays, 
among other outcomes. We included 4 articles from the 
references of the reviewed articles. Sixty studies met all 
criteria. The screening process is detailed in Fig. 1.

The Rayyan.ai software (https:// new. rayyan. ai/ revie 
ws/ 806188/ scree ning) was used in the screening and 
selection process for the study. We utilized Rayyan.ai 
to facilitate the systematic review process, starting with 
the import of RIS files from five databases. Rayyan’s fea-
tures enabled us to efficiently manage and organize the 
large volume of articles retrieved from these sources. The 
software automatically detected and removed duplicate 
records across the five databases, streamlining the initial 
phase of data cleaning.

Following duplicate removal, Rayyan was used to 
screen the remaining articles against the predefined 
inclusion and exclusion criteria. The tool allowed for 
quick and flexible tagging of articles based on specific 

Table 2 Inclusion and exclusion criteria for prediction models in patient triage in EDs

Inclusion criteria Exclusion criteria

I—Population: Patients undergoing the triage process to receive emer-
gency care (adults and pediatrics) in EDs

VII—Studies that performed patient triage with coronavirus disease 2019 
(COVID-19), prehospital triage in emergency medical dispatch, triage of call 
center, triage of sepsis, triage of stroke, and ophthalmology triage

II—Prediction outcomes: Triage of patients in EDs VIII—Other outcome prediction: Studies on hospital admission, hospital 
readmission, length of stay, ED admission, fast-track section of EDs, detec-
tion of sepsis, and other illnesses

III—Study design: All retrospective and prospective studies IX—Studies that conducted patient triage (e.g., ESI, MTS) without using ML 
or NLP methods for patient classification

IV—Studies that used at least one ML model (including LR) or NLP 
for patient triage in EDs

X—Studies that were not accessible in full text

V—Studies published in English, from any publication date, and peer-
reviewed

XI—Studies published in languages other than English

VI—Studies that used variables collected during triage, such as structured 
data (e.g., demographics, vital signs) and unstructured data (e.g., nursing 
or medical triage notes)

XII—Gray literature and conference papers

Table 3 Research questions

Since the first research question (RQ1) is broad and involves the application of other methods, it has been divided into three sub-questions: RQ1.1 Classification 
algorithms, RQ1.2 Variable selection techniques, and RQ1.3 Class imbalance correction methods

# Research Question Rationale

RQ1 What ML and/or NLP methods were used for patient triage classifica-
tion in EDs?

Identifying which ML models were used for patient triage classification

RQ2 Do ML and/or NLP methods show high performance in predicting 
patient triage in EDs?

Evaluate the discriminative ability of methods in patient triage in EDs

RQ3 Does using nursing or clinical notes through NLP improve prediction 
performance compared to studies using only structured data?

Evaluate whether the incorporation of free-text improves the perfor-
mance of ML algorithms compared to algorithms using only structured 
data. Previous systematic reviews did not address this question

https://new.rayyan.ai/reviews/806188/screening
https://new.rayyan.ai/reviews/806188/screening
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Table 4 Literature search strategy strings

Database Search term Query box/search within Search in Results in 
11/10/2023

Web of Science (triage OR “clinical triage” OR “emergency calls” OR “tel-
ephone triage” OR “classification of patient” OR “Patient 
severity” OR “Patient acuity” OR “patient prioritization”) 
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”) 
AND (“emergency department” OR “emergency room” 
OR “emergency medical system” OR “emergency medical 
service” OR “emergency unit” OR “emergency medicine” 
OR “emergency service” OR “emergency care” OR “urgent 
care” OR “accident and emergency” OR “accident & 
emergency” OR A&E)

All Fields Core Collection 302

PubMed Central (triage OR “clinical triage” OR “emergency calls” OR “tel-
ephone triage” OR “classification of patient” OR “Patient 
severity” OR “Patient acuity” OR “patient prioritization”) 
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”) 
AND (“emergency department” OR “emergency room” 
OR “emergency medical system” OR “emergency medical 
service” OR “emergency unit” OR “emergency medicine” 
OR “emergency service” OR “emergency care” OR “urgent 
care” OR “accident and emergency” OR “accident & 
emergency” OR A&E)

All Fields MEDLINE 91

Scopus (triage OR “clinical triage” OR “emergency calls” OR “tel-
ephone triage” OR “classification of patient” OR “Patient 
severity” OR “Patient acuity” OR “patient prioritization”) 
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”) 
AND (“emergency department” OR “emergency room” 
OR “emergency medical system” OR “emergency medical 
service” OR “emergency unit” OR “emergency medicine” 
OR “emergency service” OR “emergency care” OR “urgent 
care” OR “accident and emergency” OR “accident & 
emergency” OR A&E)

Article title, Abstract, Keywords SCOPUS 609

IEEE Xplore (triage OR “clinical triage” OR “emergency calls” OR “tel-
ephone triage” OR “classification of patient” OR “Patient 
severity” OR “Patient acuity” OR “patient prioritization”) 
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”) 
AND (“emergency department” OR “emergency room” 
OR “emergency medical system” OR “emergency medical 
service” OR “emergency unit” OR “emergency medicine” 
OR “emergency service” OR “emergency care” OR “urgent 
care” OR “accident and emergency” OR “accident & 
emergency” OR A&E)

All Fields IEEE 344

ACM Digital Library (triage OR “clinical triage” OR “emergency calls” OR “tel-
ephone triage” OR “classification of patient” OR “Patient 
severity” OR “Patient acuity” OR “patient prioritization”) 
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”) 
AND (“emergency department” OR “emergency room” 
OR “emergency medical system” OR “emergency medical 
service” OR “emergency unit” OR “emergency medicine” 
OR “emergency service” OR “emergency care” OR “urgent 
care” OR “accident and emergency” OR “accident & 
emergency” OR A&E)

All Fields ACM Full-Text collection 946
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criteria, such as population, and use of ML or NLP meth-
ods. Articles that matched the inclusion criteria were 
retained, while those that fell under the exclusion crite-
ria—like studies involving COVID-19, hospital admis-
sions, or non-peer-reviewed sources—were flagged and 
excluded.

The platform also facilitated collaborative screening, 
allowing two reviewers to categorize articles indepen-
dently while tracking conflicts for later resolution. Over-
all, Rayyan.ai improved the efficiency and accuracy of the 
study selection process by automating duplicate detec-
tion and enhancing the collaboration between reviewers.

Risk of bias assessment
PROBAST [53] was used to assess the risk of bias and 
reproducibility of ML models in the studies. PROBAST 
is a tool with twenty signaling questions, designed to 
evaluate four distinct domains, providing an over-
all assessment of bias risk and model applicability. The 
Excel template from Fernandez-Felix et  al. [56] was 

used, a well-established and highly standardized tool, 
widely accepted for evaluating the risk of bias and model 
applicability in healthcare predictions. Two research-
ers independently conducted the risk of bias assessment 
using PROBAST, and any disagreements were resolved 
through discussion between them. The results of the 
PROBAST assessment are available in Tables A3  and 
A4 (Appendix A).

Assessment
The main information from the selected articles was 
summarized in Table A2 in Appendix A. For each article, 
the following were assessed: (1) author, year, and country 
of the ED; (2) triage system used; (3) classification out-
come; (4) predictors tested; (5) ML algorithms; (6) best-
performing predictors; (7) dataset partitioning and type 
of validation; (8) best-performing algorithms; (9) perfor-
mance metrics; and (10) main results.

Classification tasks were categorized into triage of criti-
cally ill patients (binary) and triage levels using systems 

Fig. 1 PRISMA [55] flow chart adapted for the selection of articles using ML or NLP in triage systems
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such as ESI and MTS (multiclass). The most common 
ML algorithms (e.g., LR and RF) and the best-performing 
ones (e.g., XGBoost and DNNs) were identified based on 
the Receiver Operating Characteristic-Area Under the 
Curve (ROC-AUC). Table  5  summarizes the best ML 
algorithms, variable selection, FE, NLP methods, and 
class imbalance correction methods used in the studies.

Results
Summary of characteristics of included studies
Figure  2 shows a quantitative summary of the selected 
corpus. The search resulted in 60 articles meeting the 
criteria described above, with 88% of the included stud-
ies being retrospective and 12% prospective, conducted 
in various countries. The United States, South Korea, 
China, and Taiwan were responsible for 69% of the total 
scientific output. Most of the studied locations, 71.4%, 
were tertiary hospitals or academic medical centers 
located in urban environments. Of the analyzed stud-
ies, 63.3% were conducted in single centers and 36.7% in 
multiple emergency centers. Twenty-five percent of the 
studies used large national samples, with more than 20 
EDs. The total number of patients included ranged from 
15,000 to 600,000 for 57.3% of the analyzed articles.

Figure 2b shows the evolution of the number of articles 
and their annual percentages, with about 78% published 
in the last 5  years. The first study using ML for patient 
triage was published in 2008 in the Journal of Biomedi-
cal Informatics (JCR = 4.5). Since 2018, there has been an 
increase in the use of ML for patient triage prediction in 
the literature. PLoS One published the highest number of 
articles (Fig.  2c). The literature is not concentrated in a 
few journals, as about 80% of the total studies were pub-
lished only two times or less in each journal.

The most commonly used traditional triage systems 
(human-based) were ESI, KTAS, and MTS (Fig. 2d). The 
top four triage systems accounted for 67% of the total 
studies. Regarding clinical outcomes analyzed, 21.6% of 
the articles studied more than one outcome. Among the 
studies, 58.3% analyzed the prediction of mortality or 
ICU admission, while 50% evaluated the prediction of 
triage-levels. The most commonly used predictor vari-
ables in the studies were demographic data, vital signs, 
and unstructured data such as nursing or medical triage 
notes. About 78.6% of the studies used fewer than 30 pre-
dictors, while only 16.3% used more than 50. Of the total, 
32.7% implemented variable selection, most frequently 
retaining vital signs, age, mode of arrival, triage notes, 
chief complaint, laboratory tests, previous visits, pain 
score, and visit reasons.

ML involves the use of algorithms that enable the infer-
ence of patterns from training data, providing the capa-
bility for generalization—making predictions on the test 

set [3, 42]. A total of 57 ML algorithms were tested in 60 
articles, ranging from one to twelve algorithms per study. 
The five most frequently used ML models were: LR at 
53.1%, RF at 46.6%, XGBoost at 36.6%, DNN, and Multi-
layer Perceptron Neural Network at 20%. Fig. 3 presents 
the most commonly used ML models and those with the 
best performance in each study. LR is the benchmark 
model, while XGBoost performed best in 52.6% of com-
parisons with other algorithms, aligning with the review 
by Sánchez-Salmerón [1].

LR analyzes the linear relationships between independ-
ent and dependent variables to estimate the probabilities 
of outcomes occurring [1]. In LR, feature importance is 
determined by the estimated coefficients, which indi-
cate the impact of each feature on the predicted out-
come [3, 25]. Each coefficient represents the change 
in the log-odds of the outcome for a one-unit increase 
in the feature, with larger absolute values signifying 
greater influence [87]. Positive coefficients increase the 
likelihood of the outcome, while negative coefficients 
decrease it [87]. This analysis helps identify the most 
significant features, enhancing the model’s interpretabil-
ity in triage levels. XGBoost is a ML algorithm utilized 
for regression and classification tasks, creating a robust 
prediction model by aggregating a collection of weak pre-
diction models [1, 43, 71]. Unlike other boosting models, 
GB trains new models directly on the errors of its pre-
decessors. XGBoost, an extension of GB, enhances this 
approach by incorporating processing optimization tech-
niques, resulting in improved outcomes while requiring 
fewer computational resources and less time [1, 43, 71].

DNN outperformed other algorithms in 66.6% of com-
parisons. DNN is a type of neural network that con-
sists of multiple hidden layers and is capable of learning 
complex patterns by applying hierarchical, nonlinear 
transformations across sequential layers [45]. In DNNs, 
assessing feature importance is more complex than in LR 
due to their non-linear nature. Rather than using coeffi-
cients, DNNs evaluate feature significance based on their 
influence on predictions across multiple layers [13, 37, 
39]. Techniques like permutation importance, SHapley 
Additive exPlanations (SHAP), and Local Interpretable 
Model-agnostic Explanations (LIME) are employed to 
determine feature contributions in triage levels [45, 46]. 
DNN and decision tree-based GB algorithms, such as 
categorical boosting (CatBoost), had better performance 
in 82.7% of comparisons. Only 30% of the studies com-
pared traditional triage systems with the performance of 
ML algorithms, showing that ML models are consistently 
superior.

The combination of NLP methods and ML algo-
rithms occurred in only 26.6% of the studies. The most 
commonly used NLP methods were: BERT [45, 46], 
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Bag-of-Words (BoW) [43, 44], word embedding (WE) 
[40, 41], Skip-gram [37, 41], and Term Frequency—
Inverse Document Frequency (TF-IDF) [44, 67]. Using 
unstructured data (triage notes) improved the perfor-
mance of ML algorithms in all studies [6, 10, 13, 39, 70]. 
Additionally, algorithms that used both structured data 
and triage notes performed better than those that used 
only one of the two types of data [6, 13, 37, 41, 43, 67, 70].

Due to class imbalance in medical datasets [39, 62], it 
is important to assess whether the studies used correc-
tion methods. Fifty-three point three percent of the stud-
ies applied techniques such as bootstrapping [10, 78], 
synthetic minority oversampling technique (SMOTE) 
[15, 81], undersampling [35, 76], and oversampling [23, 
46]. This is important because most classification models 
assume balanced classes [62], and imbalanced data tend 
to bias the model towards the majority class, impairing 
performance.

In model validation, 81% of the studies divided the 
data into training and testing sets, with common propor-
tions of 80%/20% (14 articles), 90%/10% (10 articles), and 
70%/30% (8 articles). Cross-validation was used in 56.6% 
of the studies, with K-fold being the most common (ten-
fold in 50% and fivefold in 41% of cases). Eighteen percent 
of the studies did not report data splitting. Internal–
external validation was used in 10% of the articles. The 
main metrics for evaluating the performance of differ-
ent models included ROC-AUC (C-statistic) in 78.3%, Se 
– Sensitivity (Recall) in 71.6%, positive predictive value 
(Precision) in 58.3%, Sp – Specificity in 56.6%, Accuracy 
in 41.6%, negative predictive value and F1-score in 35%, 
and Area Under the Precision and Recall Curve in 13.3%.

Quality assessment and risk of bias
The risk of bias in the predictive models was 
assessed using the PROBAST tool [53], following 

Fig. 2 Quantitative summary of the selected corpus. a Articles stratified by country. b Number of Articles and percentages per year. c Rankings 
of journals. d Articles stratified by triage system
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the standardized approach developed by Fernandez-
Felix et  al. [56]. This assessment examined four key 
domains: participants, predictors, outcomes, and 
analysis, with guidelines for implementation and 
interpretation provided in [88]. The results of this 
evaluation are presented in Fig.  4 and detailed in 
Tables A3 and A4.

Of the 60 studies reviewed, 12 were found to have a 
low risk of bias overall. Specifically, as shown in Fig. 4 
(a) and (b), only 10% of the studies exhibited a low risk 
of bias in patient triage, while a significant 73% pre-
sented a high risk of bias in the model analysis domain. 
Conversely, 80% of the evaluated models showed low 
risk of bias in the domains of predictors and partici-
pants. These findings underscore the presence of a 
high risk of bias in most prediction studies, emphasiz-
ing the need to mitigate bias to improve the reliability 
of these models in clinical practice.

When examining studies that focused on outcomes 
such as mortality and ICU admission, 30% demon-
strated low risk of bias, and 33% showed low risk in 
model analysis. Furthermore, in the assessment of the 
domains related to participants, predictors, and out-
comes, 90% of the studies indicated low risk of bias. In 
terms of model applicability, 87% of the studies were 
found to have low risk. Overall, these results suggest 
that models designed to predict mortality and ICU 
admission were less prone to bias and displayed better 
applicability compared to those used in patient triage.

Natural language processing
Text processing of clinical notes uses NLP, a subfield of 
Artificial intelligence (AI) that analyzes human language, 
including its structure and meaning [6, 42]. Initially, text 
representation was based on word frequencies in each 
text fragment, but now algorithms like DNN capture the 
meaning of words and phrases. They transform words 
into numerical vectors (embeddings), allowing models to 
process context and meaning.

Fifteen studies used NLP to process patients’ free-text 
chief complaints. Six studies used complaints recorded 
by nursing professionals [6, 10, 13, 40, 43, 67], and six 
used triage medical notes [37, 39, 44, 46, 47, 70]. One 
study applied NLP to simulated triage dialogues [45], 
another to diagnostic medical history [41], and one study 
did not report the unstructured data used in the Chat-
GPT model [48].

The NLP methods used to transform clinical notes into 
numerical variables were BoW [6, 43], CBoW – Continu-
ous Bag-of-Words [39], BERT [45–47], ChatGPT [48], 
Paragraph Vectors [37], Skip-gram [37, 41], TF-IDF [10, 
44, 67], and WE [13, 40, 41]. Tang et  al. [41] were the 
first to use WE and Skip-gram to classify patient mortal-
ity, comparing eight ML algorithms. Bidirectional Long 
Short-Term Memory achieved the highest area under the 
receiver-operating-characteristics curve (AUC) of 0.949 
using medical history text transformed into numerical 
vectors by the Skip-gram model. The Skip-gram model is 
a technique for learning word embeddings by predicting 

Fig. 3 Frequency of ML algorithms used and best models in included studies



Page 15 of 29Porto  BMC Emergency Medicine          (2024) 24:219  

Fig. 4 Summary of PROBAST tool using data from the review of prognostic models for triage-levels, mortality and ICU admission. a Summary of risk 
of bias assessment for triage-levels. b Summary of applicability assessment for triage-levels. c Summary of risk of bias assessment for mortality 
and ICU admission. d Summary of applicability assessment for mortality and ICU admission
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context words surrounding a target word, capturing 
semantic relationships in a high-dimensional vector 
space [37, 41].

Choi et  al. [6], Klang et  al. [43], and Klang et  al. [44] 
used the BoW model to convert triage notes into numer-
ical vectors, along with demographic data and vital signs 
as predictors. XGBoost performed best in the first two 
studies, with AUCs of 0.922 for predicting KTAS and 
0.93 for ICU admission. In study [44], the Ensemble 
model achieved an AUC of 0.99 in predicting mortality 
using clinical data and medical triage notes. The BoW 
model is a simple technique that represents text as an 
unordered set of words, capturing word frequency while 
ignoring grammatical structure and word order, making 
it useful for tasks like text classification and sentiment 
analysis [6, 43].

Joseph et al. [13] and Chen et al. [37] used DNNs and 
WE to classify mortality or ICU admission and Taiwan 
Triage and Acuity Scale (TTAS) levels, relying on struc-
tured data and nursing and medical notes. The notes 
were transformed with WE and used as predictors in 
the DNNs, which achieved AUCs of 0.857 for mortality 
or ICU admission and 0.863 for TTAS. WE represented 
each word with a single embedding, ignoring contex-
tual information and treating the same word identically, 
regardless of its surrounding words in the text [40, 41].

Chen et  al. [39] used the CBoW model on medical 
notes, encoded as numerical vectors, in a DNN to predict 
ICU admission. The DNN with clinical narrative-aware 
achieved an AUC of 0.874. The CBoW model extends the 
BoW approach by capturing the meaning of words based 
on their surrounding context, predicting a target word 
from its context words to enhance understanding of word 
meanings in different contexts [39].

Fernandes et  al. [10, 67] used LR, XGBoost, and TF-
IDF to vectorize patients’ chief complaints with the aim 
of predicting ICU admission and mortality. The ML algo-
rithms achieved high performance by combining struc-
tured and unstructured variables, with AUCs of 0.91 for 
ICU admission and 0.96 for mortality. The TF-IDF is 
a numerical statistic that measures the importance of a 
word in a document relative to a corpus by combining 
term frequency, which counts word occurrences, with 
inverse document frequency, which assesses how inform-
ative a word is across documents [10, 67].

Kim et  al. [45] and Wang et  al. [46] applied BERT to 
pre-process texts from dialogues between doctors and 
patients and medical triage notes of patients’ physi-
cal conditions. Support Vector Machine and LightGBM 
were the best classifiers for KTAS and MTS triage sys-
tems, with AUCs of 0.90 and 0.81, respectively. BERT is 
a model pre-trained on large text datasets, to generate 
unique word vectors based on the surrounding context of 

each word in a sentence, using attention layers to capture 
relationships and improve performance in various NLP 
tasks [45, 46].

Sarbay et  al. [48] employed ChatGPT for ESI triage 
classification using a sample of 50 patients. ChatGPT 
achieved an AUC of 0.846 for triage-levels 1–2 (high 
acuity). The ChatGPT model, developed by OpenAI, 
utilizes the Transformer architecture to analyze patient 
data and predict triage levels in the ESI system, lever-
aging extensive pre-training on unstructured text to 
understand language patterns and generate severity 
assessments [49, 89].

Xiao et  al. [47] employed TransNet with Tokenizer 
encoding to predict the triage levels of the Chinese 
Emergency Triage Scale using medical triage notes. The 
TransNet model vectorized the chief complaints and 
achieved superior performance, with AUCs of 0.947, 
0.906, 0.910, and 0.922 for levels 1 to 4, respectively. NLP 
methods improved the classification capability of ML 
algorithms using triage notes text and structured clinical 
data compared to algorithms that used only structured 
data. The Tokenizer encoder converts words into unique 
integer codes to create a sequence of encoded tokens, 
while also establishing a reverse vocabulary for efficient 
word-to-code lookup, effectively capturing the semantic 
and structural information in medical triage notes [47]. 
Table 6 provides an overview of the NLP methods used 
in the field.

Feature selection, XAI, feature engineering and resampling 
techniques
Feature selection or XAI techniques were employed 
in 63.33% of the studies (Table  5). The most commonly 
used feature selection methods included RF in 12 studies, 
XGBoost in 7 (utilizing relative importance, information 
gain, Gini index, and permutation-based methods), and 
LR in 8 studies (using lasso regularization, odds ratio, 
and deviance difference). In 36.67% of the studies, all pre-
dictors were included without feature selection.

For XAI, the most frequently used methods were SHAP 
in 4 studies and LIME in 3. The importance of these 
model explanation techniques is directly linked to the 
need for medical specialists to understand and justify ML 
predictions [52], particularly in patient triage. Given that 
such predictions can significantly impact diagnostic and 
treatment decisions, it is crucial for healthcare profes-
sionals to both trust the results and comprehend the fac-
tors behind patient classification.

In this context, XAI plays a vital role in providing trans-
parency and interpretability to ML models used in triage. 
It is crucial that ML algorithms used for triage clas-
sification are both explainable and transparent, as this 
helps physicians identify underlying conditions that may 
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Table 6 Natural language processing models used in patient triage

Ref Unstructured data Overview of NLP methods Tools (Python, R packages)

[41] Medical history (MH) – diagnostic history The Skip-gram model is a technique 
for learning word embeddings by forecasting 
the context words surrounding a target word. 
Each word in a text corpus is represented 
as a high-dimensional vector [41]. Skip-
gram aims to capture semantic relationships 
between words by forecasting adjacent con-
text words given a specific target word [41]. 
During training, the model adjusts word 
vectors to improve the accuracy of predicting 
context words. For example, in the sentence 
"The patient presents chest pain," if "patient" 
is the target word, Skip-gram predicts "The," 
"presents," "chest," and "pain" as context words. 
By iteratively training on a large corpus of text, 
the model embeds words in a continuous vec-
tor space where similar words are positioned 
closer together

• Python (SciKit‐Learn)

[6] Nursing triage notes (chief complaints) The BoW model is a simple technique that rep-
resents a text as an unordered set of words, 
disregarding grammatical structure and word 
order. To create a BoW representation, the text 
is divided into individual words, and then 
a vector is generated. Each element of this vec-
tor corresponds to a unique word in the text, 
and its value represents the frequency or count 
of occurrences of that word in the text. BoW 
captures the presence and frequency of words 
but loses contextual and word order informa-
tion. This technique is more useful in NLP 
tasks such as text classification and sentiment 
analysis, where grammatical structure may 
be less important, and the focus is on the 
keywords present in the text

• Python (Pandas, SciKit‐Learn, soynlp libraries)

[10] Nursing triage notes (chief complaints) The Term Frequency—Inverse Document 
Frequency (TF-IDF) is a numerical statistic 
that reflects how important a word is to a doc-
ument in a collection or corpus [10, 67]. Term 
frequency (TF) measures how many times each 
token appears in each observation [10, 67]. 
Inverse document frequency (IDF) is a meas-
ure of how informative a word is [10, 67], e.g., 
how common or rare the word is across all 
the observations. If a word appears in all 
the observations, it might not give that much 
insight, but if it only appears in some it might 
help differentiate between observations. 
TF-IDF is the product of two statistics: the TF 
and the IDF

• Python (NumPy and Pandas)

[67] Nursing triage notes (chief complaints) TF-IDF—The model was explained briefly 
in the previous line

• Python (NumPy and Pandas)

[13] Nursing triage notes (chief complaints) Word embedding (WE)—The first word 
embeddings did not take the context of a word 
into account, i.e. the same word is represented 
in the same way (i.e. by one embedding) inde-
pendently on where it appears in the text, i.e. 
independently on its surrounding words

• Python (SciPy and SciKit‐Learn)

[40] Nursing triage notes (chief complaints) Word embedding—The model was explained 
briefly in the previous line

• Python (SciKit‐Learn)
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Table 6 (continued)

Ref Unstructured data Overview of NLP methods Tools (Python, R packages)

[37] Text of medical triage notes (chief complaints) Paragraph vectors (PV) is NLP technique aimed 
at representing paragraphs of text as continu-
ous numerical vectors in a high-dimensional 
space. They extend the WE algorithm 
by not only mapping individual words to vec-
tors but also capturing the overall context 
and meaning of entire paragraphs. During 
training, the model learns to predict words 
based on the context of the entire paragraph, 
adjusting the paragraph vector to maximize 
prediction accuracy. As a result, similar para-
graphs tend to have close vector representa-
tions, allowing NLP models to capture semantic 
and contextual relationships between different 
parts of the text. This facilitates tasks such 
as text classification, clustering, and sentiment 
analysis

• Python (Tensorflow and SciKit‐Learn)

[70] Text of medical records (clinical terms 
from patient record free text)

In the Clinical Natural Language Process-
ing (C-NLP) method, they process raw text 
following these steps: sentence tokenization, 
word tokenization, text normalization, part-
of-speech tagging (POS tagging), chunking, 
and extraction of clinical terms. Steps 1 to 5 
are performed using the OpenNLP library 
from the Apache Software Foundation. The 
extraction of clinical terms in step 6 involves 
the following substeps: 1) extract noun phrases 
from the chunker (step 5); 2) permute the text 
in each noun phrase, generating all possible 
word combinations; 3) match the text combi-
nations with a Unified Medical Language Sys-
tem (UMLS) dictionary to extract correspond-
ing clinical terms; and 4) extract the unique 
UMLS code (concept unique identifier) for each 
medical term, which is then used as a feature

• Java 8.0, OpenNLP Java library,
• Python (Sklearn and SciPy)

[43] Nursing triage notes (chief complaints) The Bag-of-Words (BoW) was applied to repre-
sent the nursing triage notes. In this method, 
each triage note is viewed as a "bag" contain-
ing its constituent words, with no regard 
to their order within the text [43]. These words 
are then structured into a table based on their 
frequency and count [43]. Subsequently, 
a statistical classifier is trained to categorize 
each note by analyzing its word frequency 
and count [43]. BoW approach does not cap-
ture word order

• not reported

[44] Text of medical triage notes (chief complaints) BOW—The model was explained briefly 
in the previous line

• Python (libraries not reported)

[45] Texts from the dialogue between doctors 
and patients (recorded conversations)

Contextual models learn a different vector 
for a word based on the current complete 
sentence or a note context in which the word 
occurs. These vectors are often referred 
to as contextual word representations. BERT 
is based on attention layers; the model updates 
a learned word representation and will pay 
different attention (i.e. vector) to each word 
around simultaneously. The model learns gen-
eral correlation patterns of words in context. 
The contextual representations produced 
by BERT improve the overall performance 
in most downstream applications becoming 
the dominant approach in the NLP community

• Python (NumPy, SciKit‐Learn, and PyTorch)

[46] Text of medical triage notes of the patient’s 
physical conditions

BERT—The model was explained briefly 
in the previous line

• not reported
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influence the severity assigned to patients [46]. Providing 
clear explanations enhances trust in the model’s predic-
tions, enabling healthcare professionals to make more 
informed decisions. To achieve this, two XAI (SHAP [9, 
36, 45, 71] and LIME [12, 13, 46]) methods were explored 
in studies, specifically aimed at providing transparency 
and interpretability in ML models for patient triage.

FE was applied in 28.33% of the studies (Table 5), with 
one-hot encoding being the most common approach, 
used in 10 studies. Other techniques, such as princi-
pal component analysis, were less frequently employed. 
However, FE strategies were rarely explored to improve 
the quality of input data or create new predictors based 
on clinical domain knowledge, which could enhance ML 
performance in patient triage.

Class imbalance correction methods were used in 
51.66% of the studies. Approximately half of the articles 
did not apply class balancing techniques, despite the fact 

that all studies exhibited class imbalance in outcomes 
related to mortality, ICU admission, and triage levels. 
The most commonly used methods for correcting class 
imbalance were bootstrapping (12 studies), SMOTE (8 
studies), undersampling (6 studies), and oversampling, 
stratified sampling, and dropout (each used in 2 studies). 
Notably, no study combined oversampling of the minor-
ity class with undersampling of the majority class, even 
though previous research [90] suggests that combining 
these resampling techniques can improve classification 
performance in ML models. Fig. 5 provides an overview 
of the methods employed in the ML workflow across the 
60 studies.

Modeling variables
Figure 6 provides an overview of the 30 most frequently 
used and retained predictors across the studies. Among 
the most common predictors were demographics (such 

Table 6 (continued)

Ref Unstructured data Overview of NLP methods Tools (Python, R packages)

[48] Not reported The ChatGPT model, developed by Ope-
nAI, represents a specialized application 
of the Transformer neural network architecture 
and was used to predicting patient triage levels 
in the ESI system. ChatGPT is a pre-trained 
model with a vast amount of unstructured data 
from OpenAI used to learn language patterns 
through unsupervised learning techniques. By 
analyzing textual data from patient records, 
symptoms, and historical triage assessments, 
ChatGPT can generate predictions regard-
ing the severity level of a patient’s condition

• OpenAI (ChatGPT)

[47] Text of medical triage notes (chief complaints) The Tokenizer encoder functions by incorporat-
ing each word into a vocabulary and assign-
ing it a unique integer code, thus producing 
a sequence of encoded tokens [47]. Fur-
thermore, this encoder establishes a reverse 
vocabulary to facilitate word-to-code lookup 
[47]. Such an approach effectively captures 
semantic and structural information inherent 
in the text of medical triage notes [47]

• Python (Keras)

[39] Text of medical triage notes (chief complaints) The Continuous Bag-of-Words (CBoW) 
is an extension of BoW designed to understand 
the meaning of words within a given context. 
Unlike BoW models that do not analyze 
the exact word order in a sentence, CBoW 
focuses on capturing the overall meaning 
of words based on their surrounding context. 
CBoW considers the words surrounding a spe-
cific word and attempts to forecasting the cen-
tral word from that context. For example, if we 
have the phrase "the patient presents dizziness 
and shortness of breath," CBoW would try 
to predict "patient" using the words "presents," 
"dizziness," "and," and "shortness of breath." 
This approach is useful for understanding word 
meanings in different contexts

• Python (Keras)

Abbreviation: Artificial intelligence (AI), Bag-of-words (BoW), Bidirectional Encoder Representations from Transformers (BERT), Chat Generative Pre-trained Transformer 
(ChatGPT), Continuous Bag of Words (CBoW), Natural Language Processing (NLP), Term Frequency-Inverse Document Frequency (TF-IDF), Word embedding (WE)
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as age, gender, and mode of arrival (MA)), vital signs 
(including systolic blood pressure (SBP), respiratory rate 
(RR), body temperature, oxygen saturation (SpO2), dias-
tolic blood pressure (DBP), heart rate (HR), pulse rate, 

and pain scores (PS)), chief complaints (CC), and triage 
scores.

Notably, the predictors most frequently retained in the 
final models were SpO2, nursing/medical triage notes, 

Fig. 5 Overview of the methods used in the ML workflow of the studies
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CC, SBP, age, MA, DBP, laboratory test results, HR, pre-
vious visits, RR, PS, and reasons for visits. These variables 
are critical in ML models for patient triage because they 
provide a comprehensive snapshot of a patient’s clinical 
status upon arrival. For example, SpO2 and vital signs are 
direct indicators of a patient’s immediate health condi-
tion, helping to identify those who require urgent atten-
tion. Additionally, nursing and medical triage notes, 
along with chief complaints, offer valuable context and 
nuanced information that ML models can use to refine 
predictions.

Incorporating these predictors not only enhances the 
accuracy of triage classification but also improves pre-
dictions of critical outcomes like mortality and ICU 
admission. Since these variables are closely linked to key 
clinical indicators, their inclusion in models significantly 
strengthens predictive performance, ultimately support-
ing better decision-making in emergency care.

Evaluation metrics
The two most commonly used metrics for evaluating 
ML models were the ROC-AUC and sensitivity, with 
confidence intervals provided in Fig.  7. Only 23.4% of 
the studies achieved a ROC-AUC above 0.95, and 12.5% 
reported sensitivity higher than 0.95. Among the 11 stud-
ies (23.4%) that demonstrated the highest ROC-AUC 

performance, 8 were found to have a high risk of bias in 
their models (as detailed in Tables A3 and A4). Similarly, 
of the 5 studies (12.5%) reporting high sensitivity, only 
Li et  al. [68] showed a low risk of bias (Table  A3). For 
instance, Puttinaovarat et al. [74] exhibited a high risk of 
bias across all domains assessed by the PROBAST tool 
(Table A3).

The average ROC-AUC and sensitivity for algorithms 
not utilizing NLP were 0.88 and 0.80, respectively, while 
models incorporating NLP achieved slightly better per-
formance with an average ROC-AUC of 0.91 and a sen-
sitivity of 0.80. However, model performance varied 
significantly between studies, with ROC-AUC ranging 
from 0.66 to 0.99, sensitivity from 0.38 to 0.98, and accu-
racy from 0.56 to 0.99 (Table 5).

Notably, only 35% of the studies reported ROC-AUC 
values above 0.90, while the remainder ranged between 
0.66 and 0.90. Among the studies with the best per-
formance (ROC-AUC above 0.90), 76% (16 out of 21) 
utilized either NLP or class imbalance correction tech-
niques. Specifically, 38% (8 out of 21) incorporated NLP, 
while 62% (13 out of 21) employed class balancing meth-
ods. This suggests that the use of unstructured data, such 
as clinical notes from triage, and the application of class 
balancing techniques contributed to significant improve-
ments in the performance of ML algorithms. The most 

Fig. 6 Summary of the main predictor variables in modeling
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Fig. 7 Forest plot with ROC-AUC and Sensitivity (Recall) values reported in studies
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commonly used performance metrics were ROC-AUC, 
sensitivity, precision, specificity, and accuracy. Future 
studies should adopt, at a minimum, these five metrics as 
a benchmark to ensure a more consistent, standardized, 
and comparable analysis of results.

Discussion
To the best of our knowledge, this is the first study to 
provide a comprehensive overview of the use of NLP 
methods to predict patient triage in EDs. Our study dis-
cusses ML and/or NLP methods for classifying patient 
triage in EDs, analyzing 60 studies in total. The literature 
consistently supports the combined use of ML and NLP 
methods to aid decision-making by nurses and doctors in 
triage, reducing wait times and length of stay in the ED, 
thereby improving the overall flow of emergency services.

The studies included in this review exhibit a wide diver-
sity in methodologies, settings, and objectives related to 
predictive models in patient triage. Despite the differ-
ences, a common point among these studies is the pur-
suit of greater accuracy in predicting patient outcomes. 
The studies vary widely in design and scale, ranging 
from prospective cohorts (e.g., [9, 23, 45, 46, 76, 79]) to 
retrospective cohorts (e.g., [57–64]), with sample sizes 
spanning from 124 patients in Abad-Grau et  al. [57] to 
over 10 million in Kwon et al. [3]. This variation in scale 
impacts the generalizability and robustness of findings, 
with larger datasets providing more reliable insights but 
also presenting greater complexity in data handling and 
analysis.

A variety of triage systems were employed across stud-
ies, including the MTS [15, 36, 46, 79], ESI [17, 59, 70, 71], 
and others such as the Canadian Triage and Acuity Scale 
[21, 39, 86] and the KTAS [6, 45, 76, 84]. These systems’ 
application and adaptation reflect the specific needs of 
the healthcare settings in which they were implemented. 
Studies like those of Dugas et al. [24] and Goto et al. [61] 
used ESI to classify patients into five levels, while others 
focused on binary classifications for critical conditions 
(e.g., Ong et al. [23] and Kim et al. [25]). Studies indicate 
that algorithms outperform traditional triage systems 
(human-based), such as KTAS and ESI, in EDs for both 
adults and children [3, 7, 13, 17, 24, 30, 48, 64, 66, 69, 70, 
73, 76, 78, 79].

Research combining ML and NLP suggests these 
approaches as complementary to traditional systems, due 
to the lack of empirical evidence from prospective stud-
ies, of which only six were identified [9, 23, 45, 46, 76, 79]. 
In prospective studies, the main benefits identified were: 
(a) superior performance compared to traditional triage 
systems currently used in hospitals [23, 46, 76, 79]; (b) 
reduced variability in risk classification when compared 
to assessments by nursing professionals; (c) a decrease 

in both under-triage [9] and over-triage, in contrast to 
human-based triage systems [47]; (d) the inclusion of var-
iables in ML models that are typically not considered in 
traditional human-based triage systems [9]; (e) reduced 
workload for triage physicians in the ED [45]; (f ) less 
time spent on triage evaluation [46]; and (g) a system to 
enhance clinical decision-making support [2, 46, 80, 84].

Although AI models have great potential to support 
triage systems, recent studies, such as Zaboli et al., [49] 
have shown that the current performance of models like 
ChatGPT is still inferior to that of nursing professionals 
in critical contexts. The study compared ChatGPT’s per-
formance with that of nurses in assigning severity levels 
in 30 clinical cases. The results showed that the nurses 
achieved an AUROC of 0.910 (0.757–1.000), while Chat-
GPT presented an AUROC of 0.669 (0.153–1.000) in 
predicting 72-h mortality [49], indicating the superiority 
of human professionals in correctly classifying the most 
urgent cases in the MTS system.

Of the six prospective studies, only Kim et al. [45] and 
Wang et  al. [46] used NLP (BERT) in triage. This high-
lights the need for more prospective studies with ML and 
NLP to enhance triage and evaluate the performance of 
ML models in EDs. Integrated AI approaches have the 
potential to improve the accuracy and consistency of 
triage, as well as reduce human bias; however, further 
research is needed to validate these benefits in real-world 
emergency scenarios with prospective studies.

In terms of algorithms, LR is the reference model, while 
DNNs and decision tree-based algorithms with GB, such 
as XGBoost and LightGBM, demonstrate superior per-
formance. However, most ML algorithms face limita-
tions in explainability and are considered black boxes. 
Only 11% of studies used XAI to improve the interpret-
ability of predictor variables (Table 5). Few studies have 
explored XAI in classification algorithms for triage, an 
area that requires more attention in future research. The 
adoption of XAI could increase confidence in the predic-
tions of algorithms and provide insights into predictors 
that influence clinical outcomes, fostering better integra-
tion of AI into medical practice [52].

Feature selection is crucial for faster training, greater 
accuracy, and easier analysis of the modeled mecha-
nisms [91]. In the ML workflow, it was adopted in 53% 
of the studies, revealing a methodological flaw in almost 
half of the research. The absence of this step can result 
in less efficient models, which are more difficult to inter-
pret, have longer training times, and lower accuracy in 
predictions.

The most frequently retained predictor variables were 
SpO2, nursing triage notes, CC, SBP, age, MA, DBP, labo-
ratory tests, HR, previous visits, RR, PS, and visit reasons. 
It is suggested that these variables be consistently used 
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in predicting triage-levels, mortality, and ICU admis-
sion, guiding data collection in future studies. SpO2 was 
the most frequently retained predictor in ML models 
for patient triage prediction [5, 6, 17, 25, 37, 41, 61–63]. 
SpO2 levels are a critical indicator of a patient’s respira-
tory function [92]. In the ED, vital signs and SpO2 may be 
the most critical predictive variables for ICU admission 
[93]. In emergency settings, abnormal SpO2 levels can 
signal severe respiratory distress or hypoxemia, condi-
tions that require immediate attention [92]. As a result, 
including SpO2 in ML models for triage enhances the 
ability to quickly identify patients with potentially life-
threatening conditions, improving the accuracy of the 
triage process [8, 13, 75].

SBP was also a critical vital sign in most ML models for 
patient triage [9, 15, 69, 82, 83]. SBP serves as a key indi-
cator of a patient’s cardiovascular health, and abnormal 
SBP levels can signal conditions such as shock, hyperten-
sion, or hypotension, which require immediate medical 
intervention [94]. Age is a crucial predictor in most tri-
age systems, as older patients often have more underlying 
conditions and poorer prognoses compared to younger 
patients [9]. Age plays a crucial role in determining a 
patient’s risk profile, as it is closely linked to the likeli-
hood of developing certain medical conditions and the 
severity of illnesses.

Triage notes were identified as key variables in all stud-
ies that utilized unstructured data [6, 10, 13, 40, 43, 67] 
[37, 39, 44, 46, 47, 70]. Medical and nursing notes play a 
crucial role as they capture detailed and contextual infor-
mation about the patient’s condition, which may not be 
fully reflected in structured data [39]. These notes often 
include the patient’s symptoms, behavior, and clini-
cal history, providing a more comprehensive picture for 
ML models to classify patient severity levels [39]. The 
inclusion of unstructured data, such as triage notes, sig-
nificantly improved the performance of ML algorithms 
across all studies reviewed [6, 10, 13, 39, 70]. These notes 
provided critical information that complemented struc-
tured data, enhancing the model’s performance. Further-
more, algorithms utilizing both the structured data and 
the triage notes did better than those which were trained 
on just the structured data or the triage notes [6, 13, 37, 
41, 43, 67, 70].

Most predictive triage models present a high risk of 
bias, especially in model analysis, although they have a 
low risk of bias in predictors and participants. In con-
trast, models for predicting mortality and ICU admis-
sion showed lower risk of bias and better applicability. 
In the risk of bias assessment, ML algorithms generally 
have a high risk of bias in the modeling process, possi-
bly because the PROBAST tool’s risk of bias evaluation 
is particularly stringent, especially in the analysis of the 

models. Most ML models exhibited a high risk of bias 
due to the critical nature of the tool’s assessment of pre-
dictive models. This highlights the need for future stud-
ies to minimize bias to ensure the reliability of models in 
clinical practice.

The complementary nature of these studies is evident in 
their collective contribution to understanding ED triage 
and predictive modeling. The initial studies used Naive 
Bayes [21, 23, 57, 59, 62] and LR [3, 5, 6, 21, 24, 25, 41, 61, 
63] to predict triage levels, with LR serving as a reference 
model due to its interpretability and transparency, mak-
ing it more widely used and popular. As studies evolved, 
models such as SVM [20, 23, 45, 62, 74] and MLP [3, 21, 
22, 59, 78] began to be explored, with neural networks 
achieving better performance in several studies. Decision 
tree-based models, such as RF [6, 8, 10, 15, 17, 35, 36, 45, 
67, 68, 72, 76], GB [72, 78, 86], and XGBoost [12, 15, 39, 
43, 47, 70, 77, 81–85], gained prominence, with XGBoost 
emerging as the top-performing model in several recent 
studies. More advanced approaches, such as DNN, have 
shown superior performance in the most recent studies 
[5, 25, 37, 39, 45, 63, 76, 85], due to their ability to capture 
complex patterns in large volumes of unstructured data.

This study has several strengths: (i) It is a large-scale 
systematic review, comprehensively evaluating 60 arti-
cles, (ii) our search strategy did not impose date restric-
tions on the databases, ensuring broad coverage, (iii) we 
used the PROBAST tool, which assesses specific and 
relevant criteria for the development of predictive mod-
els, not addressed by other tools for evaluating risk of 
bias and applicability, and (iv) our review is the first to 
demonstrate how NLP methods have been applied to 
predict patient triage levels in EDs. In summary, the 
reviewed studies collectively enhance our understanding 
of how different triage systems, predictor variables, and 
ML algorithms can be effectively employed to predict 
patient outcomes in ED settings. Their findings highlight 
the importance of a tailored approach, where the choice 
of triage system, predictors, and algorithms should align 
with the specific healthcare setting’s needs and the clini-
cal objectives at hand.

Gaps and opportunities
Current research on ML algorithms in triage aims to 
improve classification and support healthcare profession-
als in prioritizing high-risk patients. Although 57 algo-
rithms have been used, significant gaps remain. Future 
research directions include:

• There is little evidence from prospective studies, 
indicating that limited knowledge has been accu-
mulated regarding the applicability of ML models 
in real-time clinical settings. Prospective validation 
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of ML and NLP models is necessary to evaluate 
real-time performance in patient triage. Incorpo-
rating chief complaints in free-text format has been 
shown to improve ML algorithms’ performance in 
predicting triage levels. However, additional pro-
spective validation is required to assess their effec-
tiveness in supporting clinical decision-making in 
patient triage.

• NLP was used for preprocessing text from nurs-
ing and medical notes to utilize unstructured data 
as inputs for ML algorithms in patient triage pre-
diction. This review concluded that NLP meth-
ods improved the classification capabilities of ML 
algorithms. Therefore, the exploration of new NLP 
methods, such as the Robustly Optimized BERT 
Pretraining Approach and ChatGPT, is crucial. The 
adoption of these methods in patient triage is impor-
tant because they can handle complex linguistic and 
contextual nuances, improving accuracy in analyzing 
unstructured clinical data. These new approaches can 
enhance the early identification of disease patterns 
and increase efficiency in classifying and prioritizing 
patients in EDs.

• The adoption of feature engineering and eXplain-
able artificial intelligence to enhance both the per-
formance and interpretability of ML models in pre-
dicting patient triage remains an underexplored area 
in the literature. While FE has been relatively over-
looked in triage prediction, it holds significant poten-
tial to improve ML performance by enabling models 
to better capture the underlying patterns in the data 
[95, 96]. Recent advances in FE techniques, such as 
time series signatures, Fourier transformations, and 
entity embeddings, could be highly beneficial for 
generating new predictor variables that enhance the 
accuracy of patient triage systems. Moreover, inte-
grating XAI into ML models is crucial, especially in 
patient triage, where understanding the reasoning 
behind predictions is essential for clinicians to trust 
and adopt AI-driven systems. XAI can help make the 
decision-making process of ML models transparent, 
offering interpretable insights that align with clinical 
expertise. This not only builds trust among health-
care professionals but also ensures that models can 
be effectively validated and scrutinized for biases and 
fairness. Incorporating XAI into patient triage sys-
tems could lead to more reliable and understandable 
AI solutions, ultimately improving patient outcomes 
while maintaining clinician confidence in the tech-
nology. Therefore, future research should prioritize 
exploring these underutilized areas, as they promise 
to enhance the practical utility and acceptance of ML 
models in real-world clinical settings.

• The literature on ML models in ED triage is prom-
ising in terms of enhancing the performance of tra-
ditional triage systems. However, further studies are 
needed to address the issue of healthcare profes-
sionals’ acceptance of these technologies in inte-
grating ML into the triage process, as well as ethical 
considerations. Future research should explore the 
long-term impact of implementing ML models in 
real-world emergency care settings. Identifying bar-
riers and facilitators to acceptance will provide valu-
able insights for developing strategies that ensure the 
effective and sustainable implementation of these 
technologies.

Limitations
This review does not provide a meta-analysis of the eval-
uated studies due to the significant heterogeneity among 
the methods, variables, and outcomes reported in the 
different studies. The approaches used vary widely in 
terms of ML models, NLP, as well as population charac-
teristics and predictive outcomes. This diversity makes it 
challenging to quantitatively combine the results into a 
robust statistical analysis.

Conclusion
A comprehensive systematic review of patient triage pre-
diction using ML and/or NLP is presented. LR is the ref-
erence model, while DNN and GB-based algorithms were 
the best-performing models. ML algorithms showed a 
high risk of bias in most of the evaluated studies. Stand-
ard metrics were identified, and the most important pre-
dictors in modeling were noted. The main NLP methods 
used to predict patient triage, mortality, and ICU admis-
sion were summarized and discussed in terms of their 
results.

Our review suggests that ML models surpass tradi-
tional human-based triage systems in classifying tri-
age levels, predicting mortality, and ICU admission. ML 
models can enhance triage by providing more accurate 
patient stratification, leading to improved outcomes 
in predicting mortality and ICU admission. However, 
adherence to PROBAST guidelines for predictive mod-
els is essential to ensure that studies present a low risk of 
bias.

Unstructured free-text triage notes contain rich con-
textual information that can capture complex patterns, 
such as indications of heart disease. This unstructured 
data can be leveraged by NLP methods to improve the 
accuracy of patient triage predictions. NLP methods 
improved the classification of algorithms by utilizing 
nursing notes, medical notes, and structured clinical 
data, compared to models that used only structured 
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data. FE and class balancing methods enhanced the 
performance of ML algorithms. However, FE and XAI 
were underexplored approaches in the field. Future 
studies should consider FE, XAI, and class imbalance 
correction techniques.
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TF-IDF  Term Frequency—Inverse Document Frequency
TTAS  Taiwan Triage and Acuity Scale
WE  Word embedding
XAI  EXplainable Artificial Intelligence
XGBoost  EXtreme gradient boosting
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