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Improving triage performance in emergency @

departments using machine learning
and natural language processing: a systematic
review
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Abstract

Background In Emergency Departments (EDs), triage is crucial for determining patient severity and prioritizing
care, typically using the Manchester Triage Scale (MTS). Traditional triage systems, reliant on human judgment, are
prone to under-triage and over-triage, resulting in variability, bias, and incorrect patient classification. Studies suggest
that Machine Learning (ML) and Natural Language Processing (NLP) could enhance triage accuracy and consistency.
This review analyzes studies on ML and/or NLP algorithms for ED patient triage.

Methods Following Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, we
conducted a systematic review across five databases: Web of Science, PubMed, Scopus, IEEE Xplore, and ACM Digital
Library, from their inception of each database to October 2023. The risk of bias was assessed using the Predic-

tion model Risk of Bias Assessment Tool (PROBAST). Only articles employing at least one ML and/or NLP method

for patient triage classification were included.

Results Sixty studies covering 57 ML algorithms were included. Logistic Regression (LR) was the most used model,
while eXtreme Gradient Boosting (XGBoost), decision tree-based algorithms with Gradient Boosting (GB), and Deep
Neural Networks (DNNs) showed superior performance. Frequent predictive variables included demographics

and vital signs, with oxygen saturation, chief complaints, systolic blood pressure, age, and mode of arrival being
the most retained. The ML algorithms showed significant bias risk due to critical bias assessment in classification
models.

Conclusion NLP methods improved ML algorithms' classification capability using triage nursing and medical notes
and structured clinical data compared to algorithms using only structured data. Feature engineering (FE) and class

imbalance correction methods enhanced ML workflows’ performance, but FE and eXplainable Artificial Intelligence
(XAl) were underexplored in this field.

Registration and funding.

This systematic review has been registered (registration number: CRD42024604529) in the International Prospective
Register of Systematic Reviews (PROSPERO) and can be accessed online at the following URL: https://www.crd.york.
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Introduction

In the Emergency Department (ED), patient care begins
with triage, which is a preliminary clinical assessment
performed to identify the severity of the patient’s health
condition before diagnostic and therapeutic evaluation
[1, 2]. Triage is essential for identifying patients who
require urgent care and must be attended to immediately
[1, 3]. The most commonly used emergency triage sys-
tems employ five-level priority scales associated with the
patient’s condition, such as the Korean Triage and Acuity
Scale (KTAS), Emergency Severity Index (ESI), and Man-
chester Triage Scale (MTS) [4].

Traditional triage systems are widely adopted in EDs
to prioritize patients and efficiently allocate available
resources [3, 5-9]. However, some studies report under-
triage (which occurs when a patient is not classified at the
severity level corresponding to their condition, resulting
in increased morbidity, mortality, and costs) [10-12] and
over-triage (when less urgent patients are designated for
urgent care, diverting resources from patients who genu-
inely require such care) [11-13] as frequently occurring
phenomena [9, 11, 14].

The use of triage scales depends on human judgment,
which can result in high variability and individual bias,
affecting the accuracy of the assessment [3, 15, 16].
Studies report that some triage systems, such as the
ESI, exhibit suboptimal predictive capacity for identify-
ing severely ill patients, as well as low inter-rater agree-
ment, high variability within the same triage level [5, 11,
14, 17], and a predominance of classifying patients at the
medium acuity level [11, 18].

Incorrect patient classifications are common in tra-
ditional triage systems [4, 9, 12] and result in issues in
EDs such as: (i) overcrowding [19]; (ii) under-triage; (iii)
over-triage; (iv) failures to identify patients with cardiac
events [4]; (v) increased safety risks, patient wait times,
and deterioration in the quality of care [2, 19]; and (vi) a
high degree of variability in triage assignment by nurses
within the same region [16]. This context creates the
need for more accurate classification of patient condi-
tions at the time of triage, which can be achieved through
Machine Learning (ML) and Natural Language Process-
ing (NLP) [11, 14, 15]. An effective strategy to improve
triage systems and support nurses’ decision-making in
patient stratification is the use of ML models [4].

Various ML models have been used in patient triage
classification, including both multiclass classification [8,

20-22] and binary classification [23-25]. ML has dem-
onstrated high performance in predicting various clinical
outcomes, such as hospital admissions [26-29], critical
care in patients with chest pain [30], patients with sepsis
[31-33] and patient no-shows for medical appointments
[34].

Predominant models in the literature include Logistic
Regression (LR) [6, 24] and Random Forest (RF) [17, 35].
High-performance models include eXtreme Gradient
Boosting (XGBoost) [8, 12] and Deep Neural Networks
(DNNs) [36, 37]. Studies have shown high performance
in triage prediction [9, 15] using ML with structured
patient triage variables. Recently, incorporating triage
clinical notes has demonstrated improved ML classifica-
tion performance based on NLP [6, 10, 13, 37-41], high-
lighting the advantage of combining both approaches to
achieve superior performance.

NLP uses computational models to analyze human
language, its structure, and meaning [6, 42]. Initially, in
patient triage, NLP methods were simple (e.g., Bag-of-
Words [43, 44]), considering the relative frequencies of
words in triage notes, ignoring word order and context
[43]. More recent NLP methods based on DNNs process
triage notes through layers of neural networks, provid-
ing more complex representations of the data [13, 37,
39]. Another advanced method used in the field is Bidi-
rectional Encoder Representations from Transform-
ers (BERT), a model pre-trained on large text datasets,
applied in patient triage prediction [45-47]. Recent
studies have employed the Chat Generative Pre-trained
Transformer (ChatGPT) model [48, 49] for patient triage.
This study describes the methods and evaluates the per-
formance of NLP applications on unstructured free-text
triage notes.

Three systematic reviews [1, 18, 50] and one literature
review [19] on ML models for triage highlight the perfor-
mance of XGBoost and Gradient Boosting (GB), with LR
showing inferior performance. Previous reviews focused
on various algorithms for disease predictions, hospital
admissions, and triage, but only one concentrated on ED
triage, limited to a two-year period. The current review
addresses multiclass patient classification, crucial for
the efficient allocation of human and material resources
in EDs [19], and explores less-discussed aspects: feature
selection, feature engineering (FE), eXplainable Artificial
Intelligence (XAI), class imbalance correction, and par-
ticularly the use of NLP, which are essential for improving
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the performance of ML algorithms. FE involves creating
new features based on domain knowledge or exploratory
analysis of available data [51], while XAI refers to sys-
tems that provide transparent and understandable expla-
nations of their processes, making it easier for users to
comprehend how the ML model functions and why spe-
cific outcomes are produced [52].

In this work, 60 original studies were comprehensively
analyzed, with the objective of systematically review-
ing studies that employed ML and/or NLP methods for
classifying the triage of adult and pediatric patients in
EDs. The studies were organized based on their main
characteristics: (i) quality assessment and risk of bias, (ii)
ML and NLP methods used, (iii) variable selection, FE,
and resampling techniques, (iv) predictors tested, and
(v) performance metrics. The main findings include: (i)
ML models exhibited a high risk of bias when evaluated
using the Prediction Model Risk of Bias Assessment Tool
(PROBAST) [53], (ii) NLP enhanced the performance of
ML algorithms in predicting patient triage, (iii) FE and
XAI approaches were underutilized in this field, (iv) the
most commonly used and retained predictor variables
were identified, (v) the classification performance was
assessed using key metrics, and (vi) an overview of the
methods employed in the ML workflow was provided.
This review underscores the need for more robust and
explainable approaches in the development and evalua-
tion of predictive models for patient triage.

Materials and methods

In the literature, ML algorithms have been widely used
in recent years, being the subject of three systematic
reviews [1, 18, 50] and one literature review [19]. How-
ever, a comprehensive understanding of the five aspects
is lacking: feature selection, FE, XAl, class imbalance cor-
rection, and particularly the use of NLP. The previous
reviews were summarized in Table 1 to identify the unex-
plored aspects. These aspects are fundamental, as they all
impact the performance of ML models, and the quality of
the predictions made in the studies.

The methodological steps used to conduct the sys-
tematic review included: (i) registering the systematic
review protocol in PROSPERO, (ii) applying the prede-
fined inclusion and exclusion criteria, (iii) following the
Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) 2020 guidelines to ensure a
comprehensive and transparent reporting of the review
process, (iv) formulating research questions using the
Participants, Intervention, Comparison, Outcome, Study
Design (PICO-SD) format [54], followed by a search
strategy conducted across five databases, covering the
period from the inception of each database until Octo-
ber 2023, (v) extracting and synthesizing data from the
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included studies to answer the research questions, (vi)
analyzing the risk of bias using the PROBAST tool to
ensure the validity and applicability of the predictive
models, and (vii) performing a sensitivity and ROC-AUC
analysis to assess the robustness of the findings.

Inclusion and exclusion criteria

The primary outcome was defined as the triage-levels
of patients (multiclass classification), while the second-
ary outcome was the triage of critical patients, including
mortality or admission to the intensive care unit (binary
classification). This review covers ML and/or NLP meth-
ods for the classification of patient triage in EDs. The fol-
lowing criteria presented in Table 2 were used to select
the studies.

Research questions

We analyzed studies that applied ML and/or NLP meth-
ods for patient triage classification to answer the research
questions outlined in Table 3. These research questions
were developed following the PICO-SD format [54].
Specifically, the patient/population/problem refers to
patients in the ED. The intervention refers to the use
of ML algorithms or NLP methods for patient triage
in the ED. The comparison involves at least one ML or
NLP method for patient triage, either with or without a
comparison to conventional triage systems, such as the
ESI or MTS. The outcomes focus on triage of severely ill
patients, including mortality, admission to the intensive
care unit (ICU), and triage levels. Finally, the study design
includes both retrospective and prospective studies.

Search strategy and registration

This study followed the PRISMA 2020 protocol [55] to
select studies based on the defined criteria. PRISMA is
used to address the three research questions in Table 3.
The steps of the PRISMA checklist are detailed in
Table Al, in Appendix A. This systematic review is reg-
istered with the International Prospective Register of Sys-
tematic Reviews (PROSPERO) and is available for access
online at the following URL: https://www.crd.york.ac.
uk/prospero/display_record.php?RecordID=604529. The
protocol has been registered on PROSPERO (registration
number CRD42024604529).

First, Medical Subject Headings were used to define
keywords related to the topic. Next, the databases Web of
Science, PubMed, Scopus, IEEE Xplore, and ACM Digital
Library were selected to search for studies published up
to October 2023. Searches in the five databases were ini-
tially conducted on July 20, 2023, and the last search was
on October 13, 2023.

The databases were selected based on four main cri-
teria: (i) Web of Science and IEEE Xplore were excluded
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Table 2 Inclusion and exclusion criteria for prediction models in patient triage in EDs

Inclusion criteria

Exclusion criteria

I—Population: Patients undergoing the triage process to receive emer-
gency care (adults and pediatrics) in EDs

Il—Prediction outcomes: Triage of patients in EDs

II—Study design: All retrospective and prospective studies

IV—Studies that used at least one ML model (including LR) or NLP
for patient triage in EDs

V—Studies published in English, from any publication date, and peer-
reviewed

VI—Studies that used variables collected during triage, such as structured
data (e.g, demographics, vital signs) and unstructured data (e.g., nursing
or medical triage notes)

VII—Studies that performed patient triage with coronavirus disease 2019
(COVID-19), prehospital triage in emergency medical dispatch, triage of call
center, triage of sepsis, triage of stroke, and ophthalmology triage

VIII—Other outcome prediction: Studies on hospital admission, hospital
readmission, length of stay, ED admission, fast-track section of EDs, detec-
tion of sepsis, and other illnesses

IX—Studies that conducted patient triage (e.g., ESI, MTS) without using ML
or NLP methods for patient classification
X—Studies that were not accessible in full text

XI—Studies published in languages other than English

XIl—Gray literature and conference papers

Table 3 Research questions

# Research Question Rationale

RQ1  What ML and/or NLP methods were used for patient triage classifica-  Identifying which ML models were used for patient triage classification
tion in EDs?

RQ2 Do ML and/or NLP methods show high performance in predicting Evaluate the discriminative ability of methods in patient triage in EDs
patient triage in EDs?

RQ3  Does using nursing or clinical notes through NLP improve prediction Evaluate whether the incorporation of free-text improves the perfor-

performance compared to studies using only structured data?

mance of ML algorithms compared to algorithms using only structured
data. Previous systematic reviews did not address this question

Since the first research question (RQ1) is broad and involves the application of other methods, it has been divided into three sub-questions: RQ1.1 Classification
algorithms, RQ1.2 Variable selection techniques, and RQ1.3 Class imbalance correction methods

from previous reviews; (ii) Scopus was used in only one
review [1] covering 2 years (2018-11/2020); (iii) PubMed
was chosen for its extensive coverage in medicine and
health informatics, including access to MEDLINE; and
(iv) IEEE Xplore and ACM Digital Library are leading
databases in the field of NLP and ML.

The screenings and full-text evaluations were per-
formed independently by the researchers, following
the criteria and extracting data using a standardized
form (Table A2). Conflicts were resolved by discussion
between the researchers. It was not necessary to contact
the authors of the included studies. The search strings
used are listed in Table 4. Additional references were
retrieved from the reference lists of key reviews [1, 18, 19,
50] for analysis.

Study selection

For the review, we used the participants and interven-
tions from the PICO-SD framework as search criteria.
Initially, 2,292 results were identified across five data-
bases. After excluding articles not published in journals,
not in English, and 241 duplicates, 668 remained for
screening. Ninety-three were excluded due to their titles

being out of scope, leaving 575 articles. Of these, 352 did
not report the clinical outcomes of interest. The main
focus of these excluded articles is shown in Fig. 1. Two
hundred twenty-three articles were retained for full-text
reading, of which 167 were removed for dealing with
ML or NLP related to hospital admission, chest X-rays,
among other outcomes. We included 4 articles from the
references of the reviewed articles. Sixty studies met all
criteria. The screening process is detailed in Fig. 1.

The Rayyan.ai software (https://new.rayyan.ai/revie
ws/806188/screening) was used in the screening and
selection process for the study. We utilized Rayyan.ai
to facilitate the systematic review process, starting with
the import of RIS files from five databases. Rayyan’s fea-
tures enabled us to efficiently manage and organize the
large volume of articles retrieved from these sources. The
software automatically detected and removed duplicate
records across the five databases, streamlining the initial
phase of data cleaning.

Following duplicate removal, Rayyan was used to
screen the remaining articles against the predefined
inclusion and exclusion criteria. The tool allowed for
quick and flexible tagging of articles based on specific
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Database

Search term Query box/search within

Search in Results in
11/10/2023

Web of Science

PubMed Central

Scopus

IEEE Xplore

ACM Digital Library

(triage OR “clinical triage” OR "emergency calls” OR "tel- All Fields
ephone triage” OR “classification of patient” OR “Patient
severity” OR “Patient acuity” OR “patient prioritization”)
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”)
AND (“emergency department”OR “emergency room”
OR "emergency medical system” OR "emergency medical
service” OR "emergency unit” OR “emergency medicine”
OR"emergency service” OR "emergency care” OR “urgent
care”" OR"accident and emergency” OR “accident &
emergency” OR A&E)

(triage OR “clinical triage” OR "emergency calls”" OR “tel- All Fields
ephone triage” OR “classification of patient” OR “Patient
severity” OR “Patient acuity” OR “patient prioritization”)
AND (“machine learning”OR “deep learning” OR "natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”)
AND (“emergency department”OR “emergency room”
OR"emergency medical system” OR "emergency medical
service”OR "emergency unit” OR “emergency medicine”
OR"emergency service” OR "emergency care” OR “urgent
care” OR"accident and emergency” OR “accident &
emergency” OR A&E)

Core Collection 302

MEDLINE 91

(triage OR “clinical triage” OR "emergency calls” OR “tel- Article title, Abstract, Keywords SCOPUS 609

ephone triage” OR “classification of patient” OR “Patient
severity” OR “Patient acuity” OR “patient prioritization”)
AND (“machine learning” OR “deep learning” OR "natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”)
AND (“emergency department”OR “emergency room”
OR"emergency medical system” OR "emergency medical
service”OR "emergency unit” OR “emergency medicine”
OR"emergency service” OR "emergency care” OR “urgent
care” OR"accident and emergency” OR “accident &
emergency” OR A&E)

(triage OR “clinical triage” OR "emergency calls”" OR “tel- All Fields
ephone triage” OR “classification of patient” OR “Patient
severity” OR “Patient acuity” OR “patient prioritization”)
AND (“machine learning” OR “deep learning” OR “natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”)
AND (“emergency department”OR “emergency room”
OR“emergency medical system” OR “emergency medical
service”OR “emergency unit” OR “emergency medicine”
OR "emergency service” OR “emergency care” OR “urgent
care” OR"accident and emergency” OR “accident &
emergency”OR A&E)

(triage OR “clinical triage” OR "emergency calls” OR “tel- All Fields
ephone triage” OR “classification of patient” OR “Patient
severity” OR “Patient acuity” OR “patient prioritization”)
AND (“machine learning”OR “deep learning” OR "natu-
ral language processing” OR NLP OR “artificial intel-
ligence” OR “artificial neural network” OR “text mining”)
AND (“emergency department” OR “emergency room”
OR"emergency medical system” OR "emergency medical
service”OR "emergency unit” OR “"emergency medicine”
OR"emergency service” OR "emergency care” OR “urgent
care” OR"accident and emergency” OR “accident &
emergency” OR A&E)

IEEE 344

ACM Full-Text collection 946
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Identification via databases

J

Manual identification

)

= Records identified from: Records excluded (n = 1.624)
O + PubMed (n = 91)
B « Scopus (n = 609) X, XI, and XII - Records were excluded because they were not
| © Web of Science (n = 302) journal articles, not accessible in full text, or were not published in| Records identified from: citation searching (n = 6)
'3"; « |EEE explore (n = 344) English: PubMed (n = 26), Scopus (n = 216), Web of Science (n = g 9
< + ACM Digital Library (n= 946) 8), IEEE Xplore (n = 250), ACM Digital Library (n = 833).
T
[= All (n =2.292) Records removed before screening via Rayyan software: Duplicate
records removed (n = 241).
Records A
screened by title (n Titles excluded (n = 93) ] [ Titles screened (n = 6)
/ Records excluded (n = 352) \
Y VIII and IX - Other outcomes e.g.,: diagnosis of diseases (n = 41),
ol Abstracts screened radiographs (n = 29), tomography (n = 25), length of stay (n = 25), 3
S (n=575) inot related to ML or NLP (n = 23), diagnosis of COVID-19 (n = 19), [ Abstracts screened (n = 6)
5 [sepsis patients (n = 17), detection of cancer (n = 15), detection of]
[ istroke (n = 14), myocardial infarction (n = 13), electrocardiograms -|
Q ECG (n = 10), patient arrival (n = 8), hemorrhage (n = 7), injury,
| @erity (n =7), acute appendicitis (n = 5), out of scope (n = 94). /
a Reports excluded (n = 167) N\
Y VIl and VIII - ML or NLP applied to: hospital admission (n = 37),
Reports (full-text readmission (n = 11), prehospital triage in emergency medical F "'t n
article) d for »dispatch (EMD) (n = 31), triage of call center cases (n =31), chest X- [ icl z f' o ligibilit =6
eligibility (n = 223) rays (n = 22), triage of COVID-19 (n = 17), cardiovascular di articles assessed for eligibility (n = 6)
— (n = 13), triage of sepsis (n = 11), triage of stroke (n = 12), and
- \ ophthalmology triage (n = 4). /
5
5 Studies
= included in Total ber of dies included for review (n = 60) ](—{ Studies included (n = 4) ]
o review (n = 56)
(=

Fig. 1 PRISMA [55] flow chart adapted for the selection of articles using ML or NLP in triage systems

criteria, such as population, and use of ML or NLP meth-
ods. Articles that matched the inclusion criteria were
retained, while those that fell under the exclusion crite-
ria—like studies involving COVID-19, hospital admis-
sions, or non-peer-reviewed sources—were flagged and
excluded.

The platform also facilitated collaborative screening,
allowing two reviewers to categorize articles indepen-
dently while tracking conflicts for later resolution. Over-
all, Rayyan.ai improved the efficiency and accuracy of the
study selection process by automating duplicate detec-
tion and enhancing the collaboration between reviewers.

Risk of bias assessment

PROBAST [53] was used to assess the risk of bias and
reproducibility of ML models in the studies. PROBAST
is a tool with twenty signaling questions, designed to
evaluate four distinct domains, providing an over-
all assessment of bias risk and model applicability. The
Excel template from Fernandez-Felix et al. [56] was

used, a well-established and highly standardized tool,
widely accepted for evaluating the risk of bias and model
applicability in healthcare predictions. Two research-
ers independently conducted the risk of bias assessment
using PROBAST, and any disagreements were resolved
through discussion between them. The results of the
PROBAST assessment are available in Tables A3 and
A4 (Appendix A).

Assessment
The main information from the selected articles was
summarized in Table A2 in Appendix A. For each article,
the following were assessed: (1) author, year, and country
of the ED; (2) triage system used; (3) classification out-
come; (4) predictors tested; (5) ML algorithms; (6) best-
performing predictors; (7) dataset partitioning and type
of validation; (8) best-performing algorithms; (9) perfor-
mance metrics; and (10) main results.

Classification tasks were categorized into triage of criti-
cally ill patients (binary) and triage levels using systems
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such as ESI and MTS (multiclass). The most common
ML algorithms (e.g., LR and RF) and the best-performing
ones (e.g., XGBoost and DNNs) were identified based on
the Receiver Operating Characteristic-Area Under the
Curve (ROC-AUC). Table 5 summarizes the best ML
algorithms, variable selection, FE, NLP methods, and
class imbalance correction methods used in the studies.

Results

Summary of characteristics of included studies

Figure 2 shows a quantitative summary of the selected
corpus. The search resulted in 60 articles meeting the
criteria described above, with 88% of the included stud-
ies being retrospective and 12% prospective, conducted
in various countries. The United States, South Korea,
China, and Taiwan were responsible for 69% of the total
scientific output. Most of the studied locations, 71.4%,
were tertiary hospitals or academic medical centers
located in urban environments. Of the analyzed stud-
ies, 63.3% were conducted in single centers and 36.7% in
multiple emergency centers. Twenty-five percent of the
studies used large national samples, with more than 20
EDs. The total number of patients included ranged from
15,000 to 600,000 for 57.3% of the analyzed articles.

Figure 2b shows the evolution of the number of articles
and their annual percentages, with about 78% published
in the last 5 years. The first study using ML for patient
triage was published in 2008 in the Journal of Biomedi-
cal Informatics (JCR=4.5). Since 2018, there has been an
increase in the use of ML for patient triage prediction in
the literature. PLoS One published the highest number of
articles (Fig. 2c). The literature is not concentrated in a
few journals, as about 80% of the total studies were pub-
lished only two times or less in each journal.

The most commonly used traditional triage systems
(human-based) were ESI, KTAS, and MTS (Fig. 2d). The
top four triage systems accounted for 67% of the total
studies. Regarding clinical outcomes analyzed, 21.6% of
the articles studied more than one outcome. Among the
studies, 58.3% analyzed the prediction of mortality or
ICU admission, while 50% evaluated the prediction of
triage-levels. The most commonly used predictor vari-
ables in the studies were demographic data, vital signs,
and unstructured data such as nursing or medical triage
notes. About 78.6% of the studies used fewer than 30 pre-
dictors, while only 16.3% used more than 50. Of the total,
32.7% implemented variable selection, most frequently
retaining vital signs, age, mode of arrival, triage notes,
chief complaint, laboratory tests, previous visits, pain
score, and visit reasons.

ML involves the use of algorithms that enable the infer-
ence of patterns from training data, providing the capa-
bility for generalization—making predictions on the test

Page 8 of 29

set [3, 42]. A total of 57 ML algorithms were tested in 60
articles, ranging from one to twelve algorithms per study.
The five most frequently used ML models were: LR at
53.1%, RF at 46.6%, XGBoost at 36.6%, DNN, and Multi-
layer Perceptron Neural Network at 20%. Fig. 3 presents
the most commonly used ML models and those with the
best performance in each study. LR is the benchmark
model, while XGBoost performed best in 52.6% of com-
parisons with other algorithms, aligning with the review
by Sanchez-Salmerén [1].

LR analyzes the linear relationships between independ-
ent and dependent variables to estimate the probabilities
of outcomes occurring [1]. In LR, feature importance is
determined by the estimated coefficients, which indi-
cate the impact of each feature on the predicted out-
come [3, 25]. Each coefficient represents the change
in the log-odds of the outcome for a one-unit increase
in the feature, with larger absolute values signifying
greater influence [87]. Positive coefficients increase the
likelihood of the outcome, while negative coefficients
decrease it [87]. This analysis helps identify the most
significant features, enhancing the model’s interpretabil-
ity in triage levels. XGBoost is a ML algorithm utilized
for regression and classification tasks, creating a robust
prediction model by aggregating a collection of weak pre-
diction models [1, 43, 71]. Unlike other boosting models,
GB trains new models directly on the errors of its pre-
decessors. XGBoost, an extension of GB, enhances this
approach by incorporating processing optimization tech-
niques, resulting in improved outcomes while requiring
fewer computational resources and less time [1, 43, 71].

DNN outperformed other algorithms in 66.6% of com-
parisons. DNN is a type of neural network that con-
sists of multiple hidden layers and is capable of learning
complex patterns by applying hierarchical, nonlinear
transformations across sequential layers [45]. In DNNS,
assessing feature importance is more complex than in LR
due to their non-linear nature. Rather than using coeffi-
cients, DNNs evaluate feature significance based on their
influence on predictions across multiple layers [13, 37,
39]. Techniques like permutation importance, SHapley
Additive exPlanations (SHAP), and Local Interpretable
Model-agnostic Explanations (LIME) are employed to
determine feature contributions in triage levels [45, 46].
DNN and decision tree-based GB algorithms, such as
categorical boosting (CatBoost), had better performance
in 82.7% of comparisons. Only 30% of the studies com-
pared traditional triage systems with the performance of
ML algorithms, showing that ML models are consistently
superior.

The combination of NLP methods and ML algo-
rithms occurred in only 26.6% of the studies. The most
commonly used NLP methods were: BERT [45, 46],
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Fig. 2 Quantitative summary of the selected corpus. a Articles stratified by country. b Number of Articles and percentages per year. ¢ Rankings

of journals. d Articles stratified by triage system

Bag-of-Words (BoW) [43, 44], word embedding (WE)
[40, 41], Skip-gram [37, 41], and Term Frequency—
Inverse Document Frequency (TE-IDF) [44, 67]. Using
unstructured data (triage notes) improved the perfor-
mance of ML algorithms in all studies [6, 10, 13, 39, 70].
Additionally, algorithms that used both structured data
and triage notes performed better than those that used
only one of the two types of data [6, 13, 37, 41, 43, 67, 70].

Due to class imbalance in medical datasets [39, 62], it
is important to assess whether the studies used correc-
tion methods. Fifty-three point three percent of the stud-
ies applied techniques such as bootstrapping [10, 78],
synthetic minority oversampling technique (SMOTE)
[15, 81], undersampling [35, 76], and oversampling [23,
46]. This is important because most classification models
assume balanced classes [62], and imbalanced data tend
to bias the model towards the majority class, impairing
performance.

In model validation, 81% of the studies divided the
data into training and testing sets, with common propor-
tions of 80%/20% (14 articles), 90%/10% (10 articles), and
70%/30% (8 articles). Cross-validation was used in 56.6%
of the studies, with K-fold being the most common (ten-
fold in 50% and fivefold in 41% of cases). Eighteen percent
of the studies did not report data splitting. Internal—
external validation was used in 10% of the articles. The
main metrics for evaluating the performance of differ-
ent models included ROC-AUC (C-statistic) in 78.3%, Se
— Sensitivity (Recall) in 71.6%, positive predictive value
(Precision) in 58.3%, Sp — Specificity in 56.6%, Accuracy
in 41.6%, negative predictive value and F1-score in 35%,
and Area Under the Precision and Recall Curve in 13.3%.

Quality assessment and risk of bias
The risk of bias in the predictive models was
assessed using the PROBAST tool [53], following
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the standardized approach developed by Fernandez-
Felix et al. [56]. This assessment examined four key
domains: participants, predictors, outcomes, and
analysis, with guidelines for implementation and
interpretation provided in [88]. The results of this
evaluation are presented in Fig. 4 and detailed in
Tables A3 and A4.

Of the 60 studies reviewed, 12 were found to have a
low risk of bias overall. Specifically, as shown in Fig. 4
(a) and (b), only 10% of the studies exhibited a low risk
of bias in patient triage, while a significant 73% pre-
sented a high risk of bias in the model analysis domain.
Conversely, 80% of the evaluated models showed low
risk of bias in the domains of predictors and partici-
pants. These findings underscore the presence of a
high risk of bias in most prediction studies, emphasiz-
ing the need to mitigate bias to improve the reliability
of these models in clinical practice.

When examining studies that focused on outcomes
such as mortality and ICU admission, 30% demon-
strated low risk of bias, and 33% showed low risk in
model analysis. Furthermore, in the assessment of the
domains related to participants, predictors, and out-
comes, 90% of the studies indicated low risk of bias. In
terms of model applicability, 87% of the studies were
found to have low risk. Overall, these results suggest
that models designed to predict mortality and ICU
admission were less prone to bias and displayed better
applicability compared to those used in patient triage.

Natural language processing

Text processing of clinical notes uses NLP, a subfield of
Artificial intelligence (AI) that analyzes human language,
including its structure and meaning [6, 42]. Initially, text
representation was based on word frequencies in each
text fragment, but now algorithms like DNN capture the
meaning of words and phrases. They transform words
into numerical vectors (embeddings), allowing models to
process context and meaning.

Fifteen studies used NLP to process patients’ free-text
chief complaints. Six studies used complaints recorded
by nursing professionals [6, 10, 13, 40, 43, 67], and six
used triage medical notes [37, 39, 44, 46, 47, 70]. One
study applied NLP to simulated triage dialogues [45],
another to diagnostic medical history [41], and one study
did not report the unstructured data used in the Chat-
GPT model [48].

The NLP methods used to transform clinical notes into
numerical variables were BoW [6, 43], CBoW — Continu-
ous Bag-of-Words [39], BERT [45-47], ChatGPT [48],
Paragraph Vectors [37], Skip-gram [37, 41], TE-IDF [10,
44, 67], and WE [13, 40, 41]. Tang et al. [41] were the
first to use WE and Skip-gram to classify patient mortal-
ity, comparing eight ML algorithms. Bidirectional Long
Short-Term Memory achieved the highest area under the
receiver-operating-characteristics curve (AUC) of 0.949
using medical history text transformed into numerical
vectors by the Skip-gram model. The Skip-gram model is
a technique for learning word embeddings by predicting
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context words surrounding a target word, capturing
semantic relationships in a high-dimensional vector
space [37, 41].

Choi et al. [6], Klang et al. [43], and Klang et al. [44]
used the BoW model to convert triage notes into numer-
ical vectors, along with demographic data and vital signs
as predictors. XGBoost performed best in the first two
studies, with AUCs of 0.922 for predicting KTAS and
0.93 for ICU admission. In study [44], the Ensemble
model achieved an AUC of 0.99 in predicting mortality
using clinical data and medical triage notes. The BoW
model is a simple technique that represents text as an
unordered set of words, capturing word frequency while
ignoring grammatical structure and word order, making
it useful for tasks like text classification and sentiment
analysis [6, 43].

Joseph et al. [13] and Chen et al. [37] used DNNs and
WE to classify mortality or ICU admission and Taiwan
Triage and Acuity Scale (TTAS) levels, relying on struc-
tured data and nursing and medical notes. The notes
were transformed with WE and used as predictors in
the DNNs, which achieved AUCs of 0.857 for mortality
or ICU admission and 0.863 for TTAS. WE represented
each word with a single embedding, ignoring contex-
tual information and treating the same word identically,
regardless of its surrounding words in the text [40, 41].

Chen et al. [39] used the CBoW model on medical
notes, encoded as numerical vectors, in a DNN to predict
ICU admission. The DNN with clinical narrative-aware
achieved an AUC of 0.874. The CBoW model extends the
BoW approach by capturing the meaning of words based
on their surrounding context, predicting a target word
from its context words to enhance understanding of word
meanings in different contexts [39].

Fernandes et al. [10, 67] used LR, XGBoost, and TF-
IDF to vectorize patients’ chief complaints with the aim
of predicting ICU admission and mortality. The ML algo-
rithms achieved high performance by combining struc-
tured and unstructured variables, with AUCs of 0.91 for
ICU admission and 0.96 for mortality. The TF-IDF is
a numerical statistic that measures the importance of a
word in a document relative to a corpus by combining
term frequency, which counts word occurrences, with
inverse document frequency, which assesses how inform-
ative a word is across documents [10, 67].

Kim et al. [45] and Wang et al. [46] applied BERT to
pre-process texts from dialogues between doctors and
patients and medical triage notes of patients’ physi-
cal conditions. Support Vector Machine and LightGBM
were the best classifiers for KTAS and MTS triage sys-
tems, with AUCs of 0.90 and 0.81, respectively. BERT is
a model pre-trained on large text datasets, to generate
unique word vectors based on the surrounding context of
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each word in a sentence, using attention layers to capture
relationships and improve performance in various NLP
tasks [45, 46].

Sarbay et al. [48] employed ChatGPT for ESI triage
classification using a sample of 50 patients. ChatGPT
achieved an AUC of 0.846 for triage-levels 1-2 (high
acuity). The ChatGPT model, developed by OpenAl,
utilizes the Transformer architecture to analyze patient
data and predict triage levels in the ESI system, lever-
aging extensive pre-training on unstructured text to
understand language patterns and generate severity
assessments [49, 89].

Xiao et al. [47] employed TransNet with Tokenizer
encoding to predict the triage levels of the Chinese
Emergency Triage Scale using medical triage notes. The
TransNet model vectorized the chief complaints and
achieved superior performance, with AUCs of 0.947,
0.906, 0.910, and 0.922 for levels 1 to 4, respectively. NLP
methods improved the classification capability of ML
algorithms using triage notes text and structured clinical
data compared to algorithms that used only structured
data. The Tokenizer encoder converts words into unique
integer codes to create a sequence of encoded tokens,
while also establishing a reverse vocabulary for efficient
word-to-code lookup, effectively capturing the semantic
and structural information in medical triage notes [47].
Table 6 provides an overview of the NLP methods used
in the field.

Feature selection, XAl, feature engineering and resampling
techniques

Feature selection or XAI techniques were employed
in 63.33% of the studies (Table 5). The most commonly
used feature selection methods included RF in 12 studies,
XGBoost in 7 (utilizing relative importance, information
gain, Gini index, and permutation-based methods), and
LR in 8 studies (using lasso regularization, odds ratio,
and deviance difference). In 36.67% of the studies, all pre-
dictors were included without feature selection.

For XAI, the most frequently used methods were SHAP
in 4 studies and LIME in 3. The importance of these
model explanation techniques is directly linked to the
need for medical specialists to understand and justify ML
predictions [52], particularly in patient triage. Given that
such predictions can significantly impact diagnostic and
treatment decisions, it is crucial for healthcare profes-
sionals to both trust the results and comprehend the fac-
tors behind patient classification.

In this context, XAl plays a vital role in providing trans-
parency and interpretability to ML models used in triage.
It is crucial that ML algorithms used for triage clas-
sification are both explainable and transparent, as this
helps physicians identify underlying conditions that may
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Table 6 Natural language processing models used in patient triage
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Ref Unstructured data

Overview of NLP methods

Tools (Python, R packages)

[41] Medical history (MH) — diagnostic history

[6]  Nursing triage notes (chief complaints)

[10] Nursing triage notes (chief complaints)

[67] Nursing triage notes (chief complaints)

[13] Nursing triage notes (chief complaints)

[40] Nursing triage notes (chief complaints)

The Skip-gram model is a technique

for learning word embeddings by forecasting
the context words surrounding a target word.
Each word in a text corpus is represented

as a high-dimensional vector [41]. Skip-

gram aims to capture semantic relationships
between words by forecasting adjacent con-
text words given a specific target word [41].
During training, the model adjusts word
vectors to improve the accuracy of predicting
context words. For example, in the sentence
"The patient presents chest pain," if "patient”
is the target word, Skip-gram predicts "The,'
"presents," "chest," and "pain" as context words.
By iteratively training on a large corpus of text,
the model embeds words in a continuous vec-
tor space where similar words are positioned
closer together

The BoW model is a simple technique that rep-
resents a text as an unordered set of words,
disregarding grammatical structure and word
order. To create a BoW representation, the text
is divided into individual words, and then

a vector is generated. Each element of this vec-
tor corresponds to a unique word in the text,
and its value represents the frequency or count
of occurrences of that word in the text. Bow
captures the presence and frequency of words
but loses contextual and word order informa-
tion. This technique is more useful in NLP

tasks such as text classification and sentiment
analysis, where grammatical structure may

be less important, and the focus is on the
keywords present in the text

The Term Frequency—Inverse Document
Frequency (TF-IDF) is a numerical statistic
that reflects how important a word is to a doc-
ument in a collection or corpus [10, 67]. Term
frequency (TF) measures how many times each
token appears in each observation [10, 67].
Inverse document frequency (IDF) is a meas-
ure of how informative a word is [10, 67], e.g.,,
how common or rare the word is across all

the observations. If a word appears in all

the observations, it might not give that much
insight, but if it only appears in some it might
help differentiate between observations.
TF-IDF is the product of two statistics: the TF
and the IDF

TF-IDF—The model was explained briefly
in the previous line

Word embedding (WE)—The first word
embeddings did not take the context of a word
into account, i.e. the same word is represented
in the same way (i.e. by one embedding) inde-
pendently on where it appears in the text, i.e.
independently on its surrounding words

Word embedding—The model was explained
briefly in the previous line

- Python (SciKit-Learn)

- Python (Pandas, SciKit-Learn, soynlp libraries)

« Python (NumPy and Pandas)

« Python (NumPy and Pandas)

« Python (SciPy and SciKit-Learn)

- Python (SciKit-Learn)
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Table 6 (continued)

Ref Unstructured data Overview of NLP methods Tools (Python, R packages)

[37] Text of medical triage notes (chief complaints)  Paragraph vectors (PV) is NLP technique aimed -« Python (Tensorflow and SciKit-Learn)
at representing paragraphs of text as continu-
ous numerical vectors in a high-dimensional
space. They extend the WE algorithm
by not only mapping individual words to vec-
tors but also capturing the overall context
and meaning of entire paragraphs. During
training, the model learns to predict words
based on the context of the entire paragraph,
adjusting the paragraph vector to maximize
prediction accuracy. As a result, similar para-
graphs tend to have close vector representa-
tions, allowing NLP models to capture semantic
and contextual relationships between different
parts of the text. This facilitates tasks such
as text classification, clustering, and sentiment

analysis
[70] Text of medical records (clinical terms In the Clinical Natural Language Process- - Java 8.0, OpenNLP Java library,
from patient record free text) ing (C-NLP) method, they process raw text - Python (Sklearn and SciPy)

following these steps: sentence tokenization,
word tokenization, text normalization, part-
of-speech tagging (POS tagging), chunking,
and extraction of clinical terms. Steps 1 to 5

are performed using the OpenNLP library

from the Apache Software Foundation. The
extraction of clinical terms in step 6 involves
the following substeps: 1) extract noun phrases
from the chunker (step 5); 2) permute the text
in each noun phrase, generating all possible
word combinations; 3) match the text combi-
nations with a Unified Medical Language Sys-
tem (UMLS) dictionary to extract correspond-
ing clinical terms; and 4) extract the unique
UMLS code (concept unique identifier) for each
medical term, which is then used as a feature

[43] Nursing triage notes (chief complaints) The Bag-of-Words (BoW) was applied to repre- - not reported
sent the nursing triage notes. In this method,
each triage note is viewed as a "bag" contain-
ing its constituent words, with no regard
to their order within the text [43]. These words
are then structured into a table based on their
frequency and count [43]. Subsequently,

a statistical classifier is trained to categorize
each note by analyzing its word frequency
and count [43]. BoW approach does not cap-
ture word order

[44] Text of medical triage notes (chief complaints)  BOW—The model was explained briefly - Python (libraries not reported)
in the previous line
[45] Texts from the dialogue between doctors Contextual models learn a different vector « Python (NumPy, SciKit-Learn, and PyTorch)
and patients (recorded conversations) for a word based on the current complete

sentence or a note context in which the word
occurs. These vectors are often referred

to as contextual word representations. BERT

is based on attention layers; the model updates
a learned word representation and will pay
different attention (i.e. vector) to each word
around simultaneously. The model learns gen-
eral correlation patterns of words in context.
The contextual representations produced

by BERT improve the overall performance

in most downstream applications becoming
the dominant approach in the NLP community

[46] Text of medical triage notes of the patient's BERT—The model was explained briefly « not reported
physical conditions in the previous line
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Ref Unstructured data

Overview of NLP methods

Tools (Python, R packages)

[48] Not reported

[47] Text of medical triage notes (chief complaints)

[39] Text of medical triage notes (chief complaints)

The ChatGPT model, developed by Ope-

nAl, represents a specialized application

of the Transformer neural network architecture
and was used to predicting patient triage levels
in the ESI system. ChatGPT is a pre-trained
model with a vast amount of unstructured data
from OpenAl used to learn language patterns
through unsupervised learning techniques. By
analyzing textual data from patient records,
symptoms, and historical triage assessments,
ChatGPT can generate predictions regard-

ing the severity level of a patient’s condition

The Tokenizer encoder functions by incorporat-
ing each word into a vocabulary and assign-
ing it a unigue integer code, thus producing

a sequence of encoded tokens [47]. Fur-
thermore, this encoder establishes a reverse
vocabulary to facilitate word-to-code lookup
[47]. Such an approach effectively captures
semantic and structural information inherent
in the text of medical triage notes [47]

The Continuous Bag-of-Words (CBoW)

is an extension of BoW designed to understand
the meaning of words within a given context.
Unlike BoW models that do not analyze

the exact word order in a sentence, CBoW
focuses on capturing the overall meaning

of words based on their surrounding context.
CBoW considers the words surrounding a spe-
cific word and attempts to forecasting the cen-
tral word from that context. For example, if we
have the phrase "the patient presents dizziness
and shortness of breath," CBoW would try

to predict "patient" using the words "presents,’
"dizziness," "and!" and "shortness of breath.
This approach is useful for understanding word
meanings in different contexts

- OpenAl (ChatGPT)

- Python (Keras)

« Python (Keras)

Abbreviation: Artificial intelligence (Al), Bag-of-words (BoW), Bidirectional Encoder Representations from Transformers (BERT), Chat Generative Pre-trained Transformer

(ChatGPT), Continuous Bag of Words (CBoW), Natural Language Processing (NLP), Term Frequency-Inverse Document Frequency (TF-IDF), Word embedding (WE)

influence the severity assigned to patients [46]. Providing
clear explanations enhances trust in the model’s predic-
tions, enabling healthcare professionals to make more
informed decisions. To achieve this, two XAI (SHAP [9,
36, 45, 71] and LIME [12, 13, 46]) methods were explored
in studies, specifically aimed at providing transparency
and interpretability in ML models for patient triage.

FE was applied in 28.33% of the studies (Table 5), with
one-hot encoding being the most common approach,
used in 10 studies. Other techniques, such as princi-
pal component analysis, were less frequently employed.
However, FE strategies were rarely explored to improve
the quality of input data or create new predictors based
on clinical domain knowledge, which could enhance ML
performance in patient triage.

Class imbalance correction methods were used in
51.66% of the studies. Approximately half of the articles
did not apply class balancing techniques, despite the fact

that all studies exhibited class imbalance in outcomes
related to mortality, ICU admission, and triage levels.
The most commonly used methods for correcting class
imbalance were bootstrapping (12 studies), SMOTE (8
studies), undersampling (6 studies), and oversampling,
stratified sampling, and dropout (each used in 2 studies).
Notably, no study combined oversampling of the minor-
ity class with undersampling of the majority class, even
though previous research [90] suggests that combining
these resampling techniques can improve classification
performance in ML models. Fig. 5 provides an overview
of the methods employed in the ML workflow across the
60 studies.

Modeling variables

Figure 6 provides an overview of the 30 most frequently
used and retained predictors across the studies. Among
the most common predictors were demographics (such
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Fig. 5 Overview of the methods used in the ML workflow of the studies

as age, gender, and mode of arrival (MA)), vital signs
(including systolic blood pressure (SBP), respiratory rate
(RR), body temperature, oxygen saturation (SpO2), dias-
tolic blood pressure (DBP), heart rate (HR), pulse rate,

scores.

and pain scores (PS)), chief complaints (CC), and triage

Notably, the predictors most frequently retained in the
final models were SpO2, nursing/medical triage notes,
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Fig. 6 Summary of the main predictor variables in modeling

CC, SBP, age, MA, DBP, laboratory test results, HR, pre-
vious visits, RR, PS, and reasons for visits. These variables
are critical in ML models for patient triage because they
provide a comprehensive snapshot of a patient’s clinical
status upon arrival. For example, SpO2 and vital signs are
direct indicators of a patient’s immediate health condi-
tion, helping to identify those who require urgent atten-
tion. Additionally, nursing and medical triage notes,
along with chief complaints, offer valuable context and
nuanced information that ML models can use to refine
predictions.

Incorporating these predictors not only enhances the
accuracy of triage classification but also improves pre-
dictions of critical outcomes like mortality and ICU
admission. Since these variables are closely linked to key
clinical indicators, their inclusion in models significantly
strengthens predictive performance, ultimately support-
ing better decision-making in emergency care.

Evaluation metrics

The two most commonly used metrics for evaluating
ML models were the ROC-AUC and sensitivity, with
confidence intervals provided in Fig. 7. Only 23.4% of
the studies achieved a ROC-AUC above 0.95, and 12.5%
reported sensitivity higher than 0.95. Among the 11 stud-
ies (23.4%) that demonstrated the highest ROC-AUC

performance, 8 were found to have a high risk of bias in
their models (as detailed in Tables A3 and A4). Similarly,
of the 5 studies (12.5%) reporting high sensitivity, only
Li et al. [68] showed a low risk of bias (Table A3). For
instance, Puttinaovarat et al. [74] exhibited a high risk of
bias across all domains assessed by the PROBAST tool
(Table A3).

The average ROC-AUC and sensitivity for algorithms
not utilizing NLP were 0.88 and 0.80, respectively, while
models incorporating NLP achieved slightly better per-
formance with an average ROC-AUC of 0.91 and a sen-
sitivity of 0.80. However, model performance varied
significantly between studies, with ROC-AUC ranging
from 0.66 to 0.99, sensitivity from 0.38 to 0.98, and accu-
racy from 0.56 to 0.99 (Table 5).

Notably, only 35% of the studies reported ROC-AUC
values above 0.90, while the remainder ranged between
0.66 and 0.90. Among the studies with the best per-
formance (ROC-AUC above 0.90), 76% (16 out of 21)
utilized either NLP or class imbalance correction tech-
niques. Specifically, 38% (8 out of 21) incorporated NLP,
while 62% (13 out of 21) employed class balancing meth-
ods. This suggests that the use of unstructured data, such
as clinical notes from triage, and the application of class
balancing techniques contributed to significant improve-
ments in the performance of ML algorithms. The most
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commonly used performance metrics were ROC-AUC,
sensitivity, precision, specificity, and accuracy. Future
studies should adopt, at a minimum, these five metrics as
a benchmark to ensure a more consistent, standardized,
and comparable analysis of results.

Discussion

To the best of our knowledge, this is the first study to
provide a comprehensive overview of the use of NLP
methods to predict patient triage in EDs. Our study dis-
cusses ML and/or NLP methods for classifying patient
triage in EDs, analyzing 60 studies in total. The literature
consistently supports the combined use of ML and NLP
methods to aid decision-making by nurses and doctors in
triage, reducing wait times and length of stay in the ED,
thereby improving the overall flow of emergency services.

The studies included in this review exhibit a wide diver-
sity in methodologies, settings, and objectives related to
predictive models in patient triage. Despite the differ-
ences, a common point among these studies is the pur-
suit of greater accuracy in predicting patient outcomes.
The studies vary widely in design and scale, ranging
from prospective cohorts (e.g., [9, 23, 45, 46, 76, 79]) to
retrospective cohorts (e.g., [57-64]), with sample sizes
spanning from 124 patients in Abad-Grau et al. [57] to
over 10 million in Kwon et al. [3]. This variation in scale
impacts the generalizability and robustness of findings,
with larger datasets providing more reliable insights but
also presenting greater complexity in data handling and
analysis.

A variety of triage systems were employed across stud-
ies, including the MTS [15, 36, 46, 79], ESI [17, 59, 70, 71],
and others such as the Canadian Triage and Acuity Scale
[21, 39, 86] and the KTAS [6, 45, 76, 84]. These systems’
application and adaptation reflect the specific needs of
the healthcare settings in which they were implemented.
Studies like those of Dugas et al. [24] and Goto et al. [61]
used ESI to classify patients into five levels, while others
focused on binary classifications for critical conditions
(e.g., Ong et al. [23] and Kim et al. [25]). Studies indicate
that algorithms outperform traditional triage systems
(human-based), such as KTAS and ESI, in EDs for both
adults and children [3, 7, 13, 17, 24, 30, 48, 64, 66, 69, 70,
73,76,78,79].

Research combining ML and NLP suggests these
approaches as complementary to traditional systems, due
to the lack of empirical evidence from prospective stud-
ies, of which only six were identified [9, 23, 45, 46, 76, 79].
In prospective studies, the main benefits identified were:
(a) superior performance compared to traditional triage
systems currently used in hospitals [23, 46, 76, 79]; (b)
reduced variability in risk classification when compared
to assessments by nursing professionals; (c) a decrease
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in both under-triage [9] and over-triage, in contrast to
human-based triage systems [47]; (d) the inclusion of var-
iables in ML models that are typically not considered in
traditional human-based triage systems [9]; (e) reduced
workload for triage physicians in the ED [45]; (f) less
time spent on triage evaluation [46]; and (g) a system to
enhance clinical decision-making support [2, 46, 80, 84].

Although AI models have great potential to support
triage systems, recent studies, such as Zaboli et al., [49]
have shown that the current performance of models like
ChatGPT is still inferior to that of nursing professionals
in critical contexts. The study compared ChatGPT’s per-
formance with that of nurses in assigning severity levels
in 30 clinical cases. The results showed that the nurses
achieved an AUROC of 0.910 (0.757—1.000), while Chat-
GPT presented an AUROC of 0.669 (0.153-1.000) in
predicting 72-h mortality [49], indicating the superiority
of human professionals in correctly classifying the most
urgent cases in the MTS system.

Of the six prospective studies, only Kim et al. [45] and
Wang et al. [46] used NLP (BERT) in triage. This high-
lights the need for more prospective studies with ML and
NLP to enhance triage and evaluate the performance of
ML models in EDs. Integrated AI approaches have the
potential to improve the accuracy and consistency of
triage, as well as reduce human bias; however, further
research is needed to validate these benefits in real-world
emergency scenarios with prospective studies.

In terms of algorithms, LR is the reference model, while
DNNs and decision tree-based algorithms with GB, such
as XGBoost and LightGBM, demonstrate superior per-
formance. However, most ML algorithms face limita-
tions in explainability and are considered black boxes.
Only 11% of studies used XAI to improve the interpret-
ability of predictor variables (Table 5). Few studies have
explored XAl in classification algorithms for triage, an
area that requires more attention in future research. The
adoption of XAI could increase confidence in the predic-
tions of algorithms and provide insights into predictors
that influence clinical outcomes, fostering better integra-
tion of Al into medical practice [52].

Feature selection is crucial for faster training, greater
accuracy, and easier analysis of the modeled mecha-
nisms [91]. In the ML workflow, it was adopted in 53%
of the studies, revealing a methodological flaw in almost
half of the research. The absence of this step can result
in less efficient models, which are more difficult to inter-
pret, have longer training times, and lower accuracy in
predictions.

The most frequently retained predictor variables were
SpO2, nursing triage notes, CC, SBP, age, MA, DBP, labo-
ratory tests, HR, previous visits, RR, PS, and visit reasons.
It is suggested that these variables be consistently used
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in predicting triage-levels, mortality, and ICU admis-
sion, guiding data collection in future studies. SpO2 was
the most frequently retained predictor in ML models
for patient triage prediction [5, 6, 17, 25, 37, 41, 61-63].
SpO2 levels are a critical indicator of a patient’s respira-
tory function [92]. In the ED, vital signs and SpO2 may be
the most critical predictive variables for ICU admission
[93]. In emergency settings, abnormal SpO2 levels can
signal severe respiratory distress or hypoxemia, condi-
tions that require immediate attention [92]. As a result,
including SpO2 in ML models for triage enhances the
ability to quickly identify patients with potentially life-
threatening conditions, improving the accuracy of the
triage process [8, 13, 75].

SBP was also a critical vital sign in most ML models for
patient triage [9, 15, 69, 82, 83]. SBP serves as a key indi-
cator of a patient’s cardiovascular health, and abnormal
SBP levels can signal conditions such as shock, hyperten-
sion, or hypotension, which require immediate medical
intervention [94]. Age is a crucial predictor in most tri-
age systems, as older patients often have more underlying
conditions and poorer prognoses compared to younger
patients [9]. Age plays a crucial role in determining a
patient’s risk profile, as it is closely linked to the likeli-
hood of developing certain medical conditions and the
severity of illnesses.

Triage notes were identified as key variables in all stud-
ies that utilized unstructured data [6, 10, 13, 40, 43, 67]
[37, 39, 44, 46, 47, 70]. Medical and nursing notes play a
crucial role as they capture detailed and contextual infor-
mation about the patient’s condition, which may not be
fully reflected in structured data [39]. These notes often
include the patient’s symptoms, behavior, and clini-
cal history, providing a more comprehensive picture for
ML models to classify patient severity levels [39]. The
inclusion of unstructured data, such as triage notes, sig-
nificantly improved the performance of ML algorithms
across all studies reviewed [6, 10, 13, 39, 70]. These notes
provided critical information that complemented struc-
tured data, enhancing the model’s performance. Further-
more, algorithms utilizing both the structured data and
the triage notes did better than those which were trained
on just the structured data or the triage notes [6, 13, 37,
41,43, 67, 70].

Most predictive triage models present a high risk of
bias, especially in model analysis, although they have a
low risk of bias in predictors and participants. In con-
trast, models for predicting mortality and ICU admis-
sion showed lower risk of bias and better applicability.
In the risk of bias assessment, ML algorithms generally
have a high risk of bias in the modeling process, possi-
bly because the PROBAST tool’s risk of bias evaluation
is particularly stringent, especially in the analysis of the
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models. Most ML models exhibited a high risk of bias
due to the critical nature of the tool’s assessment of pre-
dictive models. This highlights the need for future stud-
ies to minimize bias to ensure the reliability of models in
clinical practice.

The complementary nature of these studies is evident in
their collective contribution to understanding ED triage
and predictive modeling. The initial studies used Naive
Bayes [21, 23, 57,59, 62] and LR [3, 5, 6, 21, 24, 25, 41, 61,
63] to predict triage levels, with LR serving as a reference
model due to its interpretability and transparency, mak-
ing it more widely used and popular. As studies evolved,
models such as SVM [20, 23, 45, 62, 74] and MLP [3, 21,
22, 59, 78] began to be explored, with neural networks
achieving better performance in several studies. Decision
tree-based models, such as RF [6, 8, 10, 15, 17, 35, 36, 45,
67, 68, 72, 76], GB [72, 78, 86], and XGBoost [12, 15, 39,
43, 47,70, 77, 81-85], gained prominence, with XGBoost
emerging as the top-performing model in several recent
studies. More advanced approaches, such as DNN, have
shown superior performance in the most recent studies
[5, 25, 37, 39, 45, 63, 76, 85], due to their ability to capture
complex patterns in large volumes of unstructured data.

This study has several strengths: (i) It is a large-scale
systematic review, comprehensively evaluating 60 arti-
cles, (ii) our search strategy did not impose date restric-
tions on the databases, ensuring broad coverage, (iii) we
used the PROBAST tool, which assesses specific and
relevant criteria for the development of predictive mod-
els, not addressed by other tools for evaluating risk of
bias and applicability, and (iv) our review is the first to
demonstrate how NLP methods have been applied to
predict patient triage levels in EDs. In summary, the
reviewed studies collectively enhance our understanding
of how different triage systems, predictor variables, and
ML algorithms can be effectively employed to predict
patient outcomes in ED settings. Their findings highlight
the importance of a tailored approach, where the choice
of triage system, predictors, and algorithms should align
with the specific healthcare setting’s needs and the clini-
cal objectives at hand.

Gaps and opportunities

Current research on ML algorithms in triage aims to
improve classification and support healthcare profession-
als in prioritizing high-risk patients. Although 57 algo-
rithms have been used, significant gaps remain. Future
research directions include:

« There is little evidence from prospective studies,
indicating that limited knowledge has been accu-
mulated regarding the applicability of ML models
in real-time clinical settings. Prospective validation
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of ML and NLP models is necessary to evaluate
real-time performance in patient triage. Incorpo-
rating chief complaints in free-text format has been
shown to improve ML algorithms’ performance in
predicting triage levels. However, additional pro-
spective validation is required to assess their effec-
tiveness in supporting clinical decision-making in
patient triage.

+ NLP was used for preprocessing text from nurs-
ing and medical notes to utilize unstructured data
as inputs for ML algorithms in patient triage pre-
diction. This review concluded that NLP meth-
ods improved the classification capabilities of ML
algorithms. Therefore, the exploration of new NLP
methods, such as the Robustly Optimized BERT
Pretraining Approach and ChatGPT, is crucial. The
adoption of these methods in patient triage is impor-
tant because they can handle complex linguistic and
contextual nuances, improving accuracy in analyzing
unstructured clinical data. These new approaches can
enhance the early identification of disease patterns
and increase efficiency in classifying and prioritizing
patients in EDs.

+ The adoption of feature engineering and eXplain-
able artificial intelligence to enhance both the per-
formance and interpretability of ML models in pre-
dicting patient triage remains an underexplored area
in the literature. While FE has been relatively over-
looked in triage prediction, it holds significant poten-
tial to improve ML performance by enabling models
to better capture the underlying patterns in the data
[95, 96]. Recent advances in FE techniques, such as
time series signatures, Fourier transformations, and
entity embeddings, could be highly beneficial for
generating new predictor variables that enhance the
accuracy of patient triage systems. Moreover, inte-
grating XAl into ML models is crucial, especially in
patient triage, where understanding the reasoning
behind predictions is essential for clinicians to trust
and adopt Al-driven systems. XAI can help make the
decision-making process of ML models transparent,
offering interpretable insights that align with clinical
expertise. This not only builds trust among health-
care professionals but also ensures that models can
be effectively validated and scrutinized for biases and
fairness. Incorporating XAl into patient triage sys-
tems could lead to more reliable and understandable
AT solutions, ultimately improving patient outcomes
while maintaining clinician confidence in the tech-
nology. Therefore, future research should prioritize
exploring these underutilized areas, as they promise
to enhance the practical utility and acceptance of ML
models in real-world clinical settings.
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+ The literature on ML models in ED triage is prom-
ising in terms of enhancing the performance of tra-
ditional triage systems. However, further studies are
needed to address the issue of healthcare profes-
sionals’ acceptance of these technologies in inte-
grating ML into the triage process, as well as ethical
considerations. Future research should explore the
long-term impact of implementing ML models in
real-world emergency care settings. Identifying bar-
riers and facilitators to acceptance will provide valu-
able insights for developing strategies that ensure the
effective and sustainable implementation of these
technologies.

Limitations

This review does not provide a meta-analysis of the eval-
uated studies due to the significant heterogeneity among
the methods, variables, and outcomes reported in the
different studies. The approaches used vary widely in
terms of ML models, NLP, as well as population charac-
teristics and predictive outcomes. This diversity makes it
challenging to quantitatively combine the results into a
robust statistical analysis.

Conclusion

A comprehensive systematic review of patient triage pre-
diction using ML and/or NLP is presented. LR is the ref-
erence model, while DNN and GB-based algorithms were
the best-performing models. ML algorithms showed a
high risk of bias in most of the evaluated studies. Stand-
ard metrics were identified, and the most important pre-
dictors in modeling were noted. The main NLP methods
used to predict patient triage, mortality, and ICU admis-
sion were summarized and discussed in terms of their
results.

Our review suggests that ML models surpass tradi-
tional human-based triage systems in classifying tri-
age levels, predicting mortality, and ICU admission. ML
models can enhance triage by providing more accurate
patient stratification, leading to improved outcomes
in predicting mortality and ICU admission. However,
adherence to PROBAST guidelines for predictive mod-
els is essential to ensure that studies present a low risk of
bias.

Unstructured free-text triage notes contain rich con-
textual information that can capture complex patterns,
such as indications of heart disease. This unstructured
data can be leveraged by NLP methods to improve the
accuracy of patient triage predictions. NLP methods
improved the classification of algorithms by utilizing
nursing notes, medical notes, and structured clinical
data, compared to models that used only structured
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data. FE and class balancing methods enhanced the
performance of ML algorithms. However, FE and XAI
were underexplored approaches in the field. Future
studies should consider FE, XAl, and class imbalance
correction techniques.
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