
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Brossard et al. BMC Emergency Medicine            (2025) 25:3 
https://doi.org/10.1186/s12873-024-01141-4

BMC Emergency Medicine

*Correspondence:
Laure Abensur Vuillaume
laure.abensur-vuillaume@chr-metz-thionville.fr
1Emergency department, CHR Metz-Thionville, Metz 57000, France
2Université de Lorraine, Vandoeuvre les Nancy, France
3Clinical Research Support Unit, CHR Metz-Thionville, Metz 57000, France
4Emergency department, CHU Bordeaux, Bordeaux, France
5Institut Femto-ST, UMR 6174 CNRS, Université de Bourgogne Franche-
Comté, Dijon, France
6Extome, Research & Development Team, Paris 75008, France
7Bordeaux Population Health – INSERM U1219 – Université de Bordeaux, 
Bordeaux, France

Abstract
Introduction Overcrowding in emergency departments (ED) is a major public health issue, leading to increased 
workload and exhaustion for the teams, resulting poor outcomes. It seems interesting to be able to predict the 
admissions of patients in the ED.

Aim The main objective of this study was to build and test a prediction tool for ED admissions using artificial 
intelligence.

Methods We performed a retrospective multicenter study in two French ED from January 1st, 2010 to December 
31st, 2019.We tested several machine learning algorithms and compared the results.

Results The arrival and departure times from the ED of 2 hospitals were collected from all consultations during 
the study period, then grouped into 87 600 one-hour slots. Through the development of two models (one for each 
location), we found that the XGBoost method with hyperparameter adaptations was the best, suggesting that the 
studied data could be predicted (mean absolute error) at 2.63 for Hospital 1 and 2.64 for Hospital 2).

Conclusions This study ran the construction and validation of a powerful tool for predicting ED admissions in 2 
French ED. This type of tool should be integrated into the overall organization of an ED, to optimize the resources of 
healthcare professionals.
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Introduction
The overcrowding of emergency departments (ED) is 
a major issue [1–3] for department-level management. 
It is mostly the result of a mismatch between a growing 
demand for ED consultations and a decrease in the over-
all resources of these services. On the one hand, the num-
ber of ED consultations is constantly increasing, with a 
twofold raise during the last decade in France and the 
United States [1, 4]. On the other hand, we observed that 
internal factors of the ED organization led to an increase 
in passage duration, especially the inadequacy between 
the staff and the number of patients. For example, in the 
United States, there is an average of one nurse for every 
four patients and one doctor for every ten patients, with 
extended medical care delay [5]. In addition, there are 
downstream problems with a permanent reduction in the 
number of hospital beds worldwide, resulting in delays in 
patient care due to longer boarding times [6].

This overcrowding is harmful on several levels. It 
increases the workload drudgery for the teams, leading to 
a decrease in the quality of care, particularly by increasing 
the risk of medication errors [5]. It also causes additional 
health care costs, estimated at $6,8 millions over three 
years in the United States. Finally, in an overcrowded ED, 
treatments are on average 30 min late, which has a con-
siderable impact for acute care [7]. It is thus a risk factor 
for morbidity and increased mortality with approximately 
thirteen preventable deaths per emergency department 
per year [5, 8]. The impact of waiting times is also signifi-
cant for elderly patients, resulting in excess mortality [9]. 
Some teams are trying to reduce this waiting time in our 
EDs [10]. However, to increase the effectiveness of these 
interventions, i to optimize resources, particularly in 
terms of manpower, it would be interesting to be able to 
predict ED attendance. Some teams have already identi-
fied some recurrences of overcrowding and routinely use 
these trends based mainly on calendar data [11]. At the 
country level, there is an increased risk of overcrowding 
for certain seasons, certain days of the week and certain 
times of the day [11]. It seems that the ED attendance is 
associated with the weather or the road traffic [12–14]. 
The number of factors influencing the number of consul-
tations seems to be large enough to prevent all of them 
from being taken into account using simple statistical 
tools. Faced with this complex and multifactorial aspect, 
artificial intelligence (AI) tools such as machine learning 
or deep learning have started to show promising results, 
but still insufficient to be used in routine [15–19]. The 
models used and the variable selection could be further 
increased in order to provide a better prediction. AI is 
also playing an important role in ED prediction [20].

Some researchers have focused on the prediction of 
waiting times in ED. This prediction can be useful for 
patients. But, current systems have largely included 

rolling average estimates or median historical waiting 
times [21]. For example in prediction of waiting times, 
Q-lasso method reports higher accuracy than the roll-
ing average estimator [22], or the efficiency of a quantile 
regression model [23].

We believe that predicting the number of patients 
could enable us to better size the number of healthcar-
ers present in the ED and regulate the flow [24]. In addi-
tion, interdisciplinary efforts could potentially improve 
prediction performance [25]. That’s why we’ve brought 
together emergency and AI specialists.

The primary aim of this study was to build a perfor-
mant model to predict the number of admissions per 
hour to the ED. The secondary aim was to predict the 
number of patients in attendance per hour in the ED.

Methods
Data collection
We conducted a retrospective multicenter study in two 
ED in France (Mercy and Bel Air Hospitals) and devel-
oped a location specific model. All admissions in each of 
the two services between January 1st, 2010 and Decem-
ber 31st, 2019 were included for analysis. From the 
extracted data, we constituted two samples per center: (i) 
a model training sample of each center from 2010 to 2018 
included; (ii) a test sample with 2019 data on each center. 
In order to maintain patient anonymity, data was aggre-
gated at source. The number of admissions per hour, per 
service and the mean length of stay per hour (average 
time from arrival in the ED to discharge) and its standard 
deviation were extracted.

Output
The primary endpoint was the number of admissions per 
hour to each ED (variable to be predicted). The second-
ary endpoint was the number of patients attending in 
each ED per hour (variable to be predicted).

Input
We extracted, from the history of the previous 4 weeks, 
672 explanatory variables to predict the number of 
admissions per hour (4 weeks x 7 days x 24  h). Con-
cerning the explanatory data of the number of patients 
attending per hour, the historical data also included: the 
average duration of ED consultations by pathology typol-
ogy (abdominal-pelvic pathologies, cardiovascular, trau-
matology, weakness and others). In addition, we collected 
environmental data which could have an impact on ED 
attendance over 4 weeks: day of the week, meteorologi-
cal data (temperatures, atmospheric pressure, cloudiness, 
humidity, precipitation, wind speed, and horizontal vis-
ibility), road traffic data, and epidemiological data from 
the epidemic disease monitoring network (influenza, 
diarrhea, varicella.), as well as calendar data such as 
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vacations, holidays and celebrations, and ephemeris data 
[26–30]. In total, these data provided 712 explanatory 
variables to predict a datum (Fig. 1). Detailed description 
of variable were in supplementary data (Table S1).

Statistical analysis
Algorithm testing methodology
With the objective of finding the best model for each 
hospital, we used and tested different types of machine 
learning algorithms (Table  1) and compared the results 
for each hospital [31–34].

There are two types of missing data, those related to 
the target variable (number of patients) and those related 
to the features variables. For the target variable, there is 
no missing data. Slots without any patient are recorded 
with the value 0. The number of missing data related to 
features variables is very low (from 0,0% to 0,01%). Since 
the weather variables are continuous, and we get access 
to several weather channels, we selected data from three 
different weather channels close to the hospital and per-
formed a linear extrapolation in order to fill the missing 
data. The other categories of features variables (mainly 

those related to traffic) were filled in by replication of the 
last known value, in order to standardize the dataset for 
all methods of the algorithms. Normalization for com-
parison purposes was performed for quantitative vari-
ables, and target encoding for qualitative variables [38] 
In a first comparison, we used the default values of the 
hyperparameters [39]. Then we optimized the hyperpa-
rameters on the selection of explanatory variables.

The hyperparameters are certain weights or values that 
determine the learning process of a machine learning 
algorithm. For instance, hyperparameters for XGBoost 
are divided into 4 classes:

  • General parameters that guide the overall 
functioning of the model (number of parallel threads 
used to run the model, the maximum depth of a tree 
etc.).

  • Booster parameters are 2 types (tree booster and 
linear booster). For instance, hyperparameter for 
tree booster are: the learning rate, the maximum 
delta step we allow each tree’s weight estimation to 

Table 1 Tested algorithms
Algorithms Types References
Random forest ensemble decision tree method Ho, Tin Kam, « Random Decision Forests » (1995) [35]; Breiman, L. “Random Forests” (2001) [36]
XGBoost Ensemble decision tree method Chen, T. et al XGBoost: A Scalable Tree Boosting System (2016) [31]
LightGBM ensemble decision tree method Guolin Ke et al et al. LightGBM: a highly efficient gradient boosting decision tree (2017) [32]
Lasso regression penalized Robert Tibshirani, « Regression shrinkage and selection via the lasso » (1996) [37]

Fig. 1 Predicted variable and explanatory variables
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be etc. In the paper, maximum depth was fitted by 
systematically testing integers from 2 to 15.

  • Learning task parameters are used to define 
the optimization objective i.e., the metric to be 
calculated at each step (e.g., objective could be 
regression with squared loss), the metric to be used 
for data validation (e.g., root mean square error),

  • Command line parameters are only used in the 
console version.

Learning methods
Once the predictive model was chosen (the extreme gra-
dient boosting), it was necessary to fix its hyperparam-
eters and to select the explanatory variables in order 
to avoid overlearning. The risk of overlearning in time 
series models using XGBoost was mitigated through time 
series-specific cross-validation, ensuring the model did 
not have access to future data during training. Addition-
ally, early stopping was employed to halt model train-
ing when performance on the validation set began to 
degrade. Limiting the maximum tree depth (max_depth) 
and reducing the number of estimators (n_estimators) 
further helped to prevent the model from learning overly 
specific details from the training data, thereby improving 
its generalization capacity.

The hyperparameter used was the maximum depth at 
which to stop the learning. We also conducted sensitivity 
analysis by modifying the other hyperparameters (initially 
fixed at the recommended default values), without any 
significant performance improvement. We then looked 
at how the learning evolved with the number of explana-
tory variables. Finally, to obtain the best learning, we 
performed a gluttonous approach. We then considered 
only the “best” of the explanatory variables (the one that 
best discriminated), and performed learning for a maxi-
mum depth ranging from 2 to 15. The best mean absolute 
error (MAE) learning score obtained corresponded to 
our reference, which should be lowered as new variables 
were added. We took the best of the remaining variables 
for the second explanatory variable, performed as many 
learnings as there were maximum depths between 2 and 
15, and looked to see if we were thus able to improve the 
best score obtained with a single variable. In this case, we 
reproduced the process by starting with the two selected 
variables and by adding the best candidate (then tested 
on depths from 2 to 15), and if not we discarded this sec-
ond variable and tested the next most promising one. At 
each iteration, we tested a new variable, which was added 
to the list provided to the model if there was a maximum 
depth that improved the current score. On the one hand, 
we saw the local fluctuations resulting from the addi-
tion of a new variable: some were improving the previ-
ous score, others degraded it. We then noticed that the 
MAE and the root mean squared error (RMSE) decrease 

during the iterations (tests of new variables) until reach-
ing a plateau around 125, then an increase which indi-
cates overlearning.

Descriptive analysis
Descriptive statistics were expressed as mean and median 
with standard deviation (SD). For the validation of the 
best performing models, we calculated the MAE and the 
RMSE, in order to have reference values for comparison.

Ethics
This retrospective study contains no health data and 
all data were aggregated. That’s why, this study did not 
require specific authorization according to the current 
French regulations. This research is outside the scope of 
clinical research and does not require an ethics commit-
tee or asked for consent (French public health code (art. 
L1110-1 to L6441-1).

Results
Characteristics of the admissions
ED arrival and departure times for Mercy and Bel Air 
hospitals were collected from January 1, 2010 to Decem-
ber 31, 2019, and then aggregated into 87 600 one-hour 
slots. At both locations, with the exception of the years 
2012 and 2017, when slight decreases are observed, 
the year-to-date number of patients per hour has been 
steadily increasing, from around 47,000 to around 83,000 
over the period 2010–2019 for Mercy, and from around 
48,000 to around 63,000 for Bel Air (Fig. 2).

At the Mercy hospital, there was an average of 7.9 
patient arrivals per hour, with a standard deviation of 4.4 
patients, for a minimum of 1 patient/hour, and a peak 
of 36 patients At the Bel Air hospital, the average num-
ber of arrivals was slightly lower, with 7.1 patients/hour, 
but with a slightly lower standard deviation (around 4). 
The average number of patients in the ED was 15.9 and 
13.3 per hour respectively for Mercy and Bel Air. All 
results were in Table 2. The general trend in the number 
of patients per hour over the past 10 years was upward 
in both cases, but with a more marked increase in the 
case of Mercy (Figure S1 and S2). These time series also 
showed the large standard deviation, as well as possible 
annual seasonality fluctuations.

The average number of arrivals to the ED varied greatly 
depending on the time of year. In August, the average 
number of arrivalswas ∼ 7 patients/hr for Mercy, and 
∼ 6.5 patients hr for Bel-Air. (Figure S3). Early year, late 
spring and late year periods were associated with a signif-
icant increase of patient arrivals. However, the monthly 
profile was almost constant, except for a marked drop in 
August for both hospitals, showing the absence of sea-
sonality. The weekly data (Figures S4 and S5) showed a 
greater load at the end of the day on Mondays and on 
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weekends. In the middle of the week, attendancewas 
lower. Finally, the daily profilewas similar for the two ED, 
with an ascending phase from 7:00 am to 8:00 pm (with a 
slight plateau around 4:00 pm), followed by a descending 
phase (Figures S6-9).

Baselines
Before studying advanced machine learning models, we 
must first be sure that basic approaches do not provide 
reliable predictions, and that these predictions are much 
worse than those obtained by artificial intelligence. First 
of all, it can be only cyclic changes, the signal would 
correspond to its seasonal part in a decomposition of 
the same name. To check that this is not the case, we 
approximated the signal by its seasonal component (see 
Figure S10), to see how well such a predictor approxi-
mates the signal. The MAE obtained is 5.89 for Bel Air 
(6.73 for Mercy) which, as we will see, is a much larger 
error than what will be obtained using machine learn-
ing. A less naive baseline consists in having a time 
series approach to prediction, using recognized tech-
niques such as autoregressive integrated moving aver-
age (ARIMA). This raises the question of whether such 
models would not produce equally good results without 
having to worry about managing such a collection of fea-
tures. Indeed, there is a strong correlation between the 
series of patients and its version shifted by one time unit: 
the signal is strongly auto-correlated, and using the num-
ber of patients at time t, t-1 seems a good idea to predict 
the number at time t + 1. After calculation, the best AR 

model (with a lag of 4 days) leads to an MAE of 4.25 for 
Mercy (3.45 for Bel Air), and the ARIMA model does not 
do much better (3.96 for Mercy, 3.11 for Bel Air), for an 
optimal choice of parameters obtained from the autocor-
relation and partial autocorrelation graphs in the context 
of an upward trend, of (2,1,2) We will see later that arti-
ficial intelligence approaches allow us to obtain better 
results. Finally, let us note that the optimal hyperparam-
eters are equal for both hospitals: they may be different, 
but they have basically the same dynamics, because they 
are always patients going to the ED. As the same causes 
produce the same effects, we can hope that the method 
can be extended to other hospitals.

Learning
The MAE started by decreasing for Bel Air, up to a maxi-
mum depth of 5–7, and then started to increase sharply, 
independently of the number of explanatory variables: 
the models became too complex in view of the signal 
to be predicted, and we were clearly entering a phase of 
over-learning. On the other hand, the RMSE, measured 
obvious mistakes, and behaved in much the same way: 
first it decreased and then stagnated, before starting to 
increase strongly. In both cases, as well as for Mercy, it 
could be inferred that an optimal value for this hyperpa-
rameter was around 5–6. Changing the choice of hyper-
parameters did not result in a significant improvement 
in learning (Figures S11, S12). We found that the optimal 
was obtained for a max depth of 6, and that in this case 
the MAE decreased slightly but continuously with the 

Fig. 2 Annual increase in cumulative hourly emergency department patients between 2010 and 2019 at Mercy and Bel-Air hospitals
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number of variables. On the contrary, the worst results 
were obtained for a max depth greater or equal to 10, and 
the increase in the number of explanatory variables did 
not improve the learning.

Validation and selection of the best performing algorithm 
and model building
The dataset has been divided in two parts: 80% for learn-
ing (“training dataset”) and 20% for validation. The simu-
lations showed that beyond 4 weeks, the history is less 
important for the prediction. The performance of the 
predictions evaluated on 80  h of the test set was illus-
trated in Fig. 3 (note that there is no seasonality anymore, 
as the hours of the test set are randomly drawn).

Overall, the models performed well, with a slight lead 
for the XGBoost model. This was explained on the one 
hand by the real predictability, to some degree, of the 
quantity of interest, and on the other hand by the choice 
made both in terms of explanatory variables and predic-
tive models (and their parameters). Figure 4 showed the 
results for the first 6 days of the second week of 2019. 
Seasonality was found in this case. The errors, in the 
range of one to a few patients per hour, were small in the 
face of the variability and signal intensity.

Performance was measured over the entire test set in 
terms of absolute error mean and square root quadratic 
error mean. In total, the most accurate prediction was 
obtained with XGBoost with hyperparameter optimiza-
tion allowing a MAE of 2.63 for Mercy and 2.64 for Bel-
Air (Table 3), allowing us to retain this algorithm as the 
best performing for both models. We use repeated k-fold 
cross-validation to validate the model. The notebook 
of our algorithms is available on GitHub to ensure the 
reproducibility of the results (available on:  h t t  p s : /  / g i  t h  u 
b .  c o m /  e x t  o m  e - a i / p r e d i c t i n g _ e m e r g e n c y _ d e p a r t m e n t _ c r 
o w d i n g     ) .  

Discussion
Artificial intelligence, in particular by increasing the 
computing power and the number of combinations, has 
opened up many tracks of work for clinician-researchers 
in emergency medicine: triage tools, reducing medical 
errors [40–44]. For the first time to our knowledge, using 
a retrospective multicenter study, we were able to build 
several prediction models for 2 French ED centers admis-
sions by selecting the most efficient one for each hospital 
and achieve a robust proof of concept. Our prediction is 
superior to other existing models described in the litera-
ture, with a MAE of 2.63 for the first model (Mercy) and 
2.64 for the second location (Bel Air), using the XGBoost 
algorithm with hyperparameter optimization. In predic-
tive models of ED severity and care consumption, Barak-
Corren et al. have used XG-BOOST et showed that 
site-specific customization is a key driver of predictive Ta
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model performance [45]. As in our study, the XGBoost 
model achieved its best performance using the uniform 
and site-specific approaches (AUC = 0.9–0.93) [45]. 
To address the generalizability concerns, our strategy 
involves fine-tuning models to the specific data of each 
new hospital. This includes the integration of additional 

context-specific variables, such as air quality, location, 
access to public transportation etc., which may influ-
ence patient outcomes. By tailoring the model to these 
local factors, we enhance its ability to perform effectively 
across varied healthcare environments.

Fig. 3 Predictions versus reality for all the tests
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Indeed, Berg J.et al. did a retrospective study and 
used an automatic prediction algorithm by exponen-
tial smoothing to predict the number of admissions per 
month with an absolute percentage error mean of 4.8 

[15]. Despite this encouraging result, the error still seems 
too large and the monthly granularity does not seem 
precise enough to organize the EDs on this model alone. 
Several teams have used the ARIMA system designed for 

Fig. 4 Predictions versus reality on the test set, Mercy and Bel Air hospitals over the first 6 days of the second week of 2019 (x-axis hours and y-axis num-
ber of patients in the emergency department)
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the analysis and prediction of time series data [16–19]. In 
particular Kadri et al. who presented a MAE of 3,79 [17]. 
The ARIMA system alone seems to provide an accuracy 
of 85% and when used with other tools such as a Fournier 
hybrid series, a performance up to 91.2% [16–19]. In 
addition to results superior to those found in the litera-
ture, the efficiency of the algorithm developed on two 
different datasets makes its highly probable to export to 
other hospitals. These results suggest that overly complex 
models do not necessarily improve performance with rel-
atively low-dimensional ED data. We also find results of 
other authors on other types of predictive models for ED 
(hospitalization, or clinical decision support) suggest that 
models that are too complex perform less well [46].

An accurate prediction is interesting to allow the orga-
nization of EDs and to limit the risks of overcrowding. 
Today, hospital directors with an ED are advised to use 
tools to plan certain activities in order to better manage 
ED resources and adapt them to the flow [47]. Until now, 
flow predictions at the EDs have been made with multiple 
linear regression models based on calendar data allowing 
a flow prediction with an error margin of 11%, notably 
because taking into account special days such as public 
holidays has further refined the predictions [12]. Weather 
conditions are a better predictor than the day of the year 
for all trauma admissions allowing an accuracy predic-
tion of 95% [13]. Finally, taking into account road traffic 
as a reflection of human activity was essential to bring 
power and accuracy to predictions [14]. Nevertheless, if 
these elements have a real impact on the ED attending, 
used separately they still do not provide sufficient predic-
tive quality to be used in daily practice.

While predictive tools such as the one we have pro-
posed could provide data for the organization of services, 
they do not solve the problem of overworked caregivers 
and the shortage of healthcare workers [48]. The orga-
nization of an ED is complex and multifactorial; in addi-
tion, there is probably no ideal way of functioning that 

would allow an implementation to all medical depart-
ments. This is why efficient and accurate flow prediction 
tools should be integrated into a global reflection at local, 
regional and national levels [48]. Adapting resources 
and thinking about better team agility seems to be a key 
point in the proposal made by flow prediction. However, 
the main challenge to encouraging this approach, is not 
easy today in the hospital system. In particular, by pro-
posing that staff be more present during certain types of 
hours or on certain days of the week (weekends),, where 
we sometimes encounter significant resistance to change. 
The financing of these additional positions in certain time 
slots must also be weighed against the reduction of posi-
tions in other slots and the potential overall benefit to the 
quality of care. v Finally, a future possibility of our predic-
tion tool would be the precise prediction of unscheduled 
hospitalizations. This axis would allow an adaptability 
of the hospital and an early anticipation of the needs in 
daily beds. This lever would allow an action on the down-
stream which is also a strong response to the congestion 
of the ED [49]. In fact, some authors have used A.I. to 
predict the need for hospitalization upon admission to 
the ED [50]. This would be a relevant development for 
our tool, to increase its impact for hospital managers. 
On all these points, an experiment on several emergency 
centers would be relevant. It could consist in studying the 
organization set up by emergency departments, guided 
by the tool’s prediction of the number of passages in 
the short (hour, day) and medium term (week, month). 
Emergency departments can then reorganize themselves 
with advance knowledge of fluctuations in throughput. 
They could, for example, adjust the size of their medi-
cal or paramedical staff, create advanced medical posts, 
or take preventive action on certain events that generate 
specific flows. This study would enable us to select orga-
nizational models that are more effective than others, 
depending on specific flows.

Our study has a number of limitations. First, to ensure 
anonymity and to avoid having to obtain patients’ con-
sent, we worked with aggregated data; this level of preci-
sion allowed us to meet the main objective of the study 
but did not allow us to predict the types of ED consul-
tations. This level of granularity could be relevant to 
anticipate skills in terms of technical facilities (special-
ists, imaging, specialty beds, etc.). A prospective study 
will make it possible to refine this point. Secondly, these 
data concern only two different emergency departments 
in the same region. However, the large volume of patients 
studied and the quality of prediction obtained by creating 
each model allows us to imagine a possible good extrapo-
lation to other centers. Thirdly we have limited the choice 
of algorithms. XGBoost and LightGBM were chosen 
because they are very recent methods and consistently 
provide the best predictions in comparative studies. 

Table 3 Scores of the different prediction algorithms for 
the two models (ARIMA = autoregressive integrated moving 
average;MAE = Mean Absolute Error; RMSE = Mean Square Error)
Algorithms MERCY 

MODEL
BEL-AIR 
MODEL

MAE RMSE MAE RMSE
Mean 11.92 15.06 12.13 15.20
Mean / hour 9.34 12.22 8.70 11.65
AR 4.25 5.65 3.45 4.55
ARIMA 3.96 5.39 3,11 4,13
Lasso 2.92 3.82 2.90 3.80
XGBoost 2.74 3.68 2.76 3.74
Random forests 2.71 3.62 2.73 3.67
LightGBM 2.66 3.56 2.66 3.59
XGBoost + hyperparameters selection 2.63 3.51 2.64 3.59
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For the past five years, they have also been almost con-
sistently the finalists in Kaggle prediction competitions. 
They are often tied with deep learning methods based 
on LSTM or CNN, but have a much more reasonable 
learning time and hardware requirements: hospitals that 
would like to use our proposal will not have to buy expen-
sive GPUs. XGBoost and LightGBM belong to the deci-
sion tree ensemble methods, whose ancestor is random 
forests. So we thought it would be interesting to include 
these in the study, to see how much better the modern 
methods did than the old reference. Finally, LASSO was 
added because it has a reputation for performing well 
in the presence of large sets of variables. This informa-
tion was added to the paper. Of course, we could have 
included even more models, but there would be no end 
to it, and this is only a first study (which already includes 
the most promising methods). Finally, before envisaging 
a use in everyday life, it will be necessary to ask the ques-
tions of safety, ethics and prospective clinical validation 
of this type of tool, in relation to the European regulation 
of medical devices in force and the recommendations 
of patient data management [51] The work undertaken 
must continue in a multidisciplinary manner.

Conclusions
We have developed two predictive models for ED admis-
sions at two hospital locations, performing in an interdis-
ciplinary manner and taking into account public health 
needs. It is possible to predict emergency admissions and 
we confirm that an XGBoost model performs well using 
both uniform and site-specific approaches. This type of 
tool should be integrated into the overall organization 
of an emergency department, to optimize the resources 
of healthcare professionals. A prospective phase of this 
work will consolidate the results and address the complex 
issue of ED organization, in particular, by studying the 
use of this tool in real time, and observing its impact and 
use by managers. Our tool could also consider including 
other data to anticipate the need for hospital beds.
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