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Abstract 

Background  Accurate triage is required for efficient allocation of resources and to decrease patients’ length of stay. 
Triage decisions are often subjective and vary by provider, leading to patients being over-triaged or under-triaged. 
This study developed machine learning models that incorporated natural language processing (NLP) to predict 
patient disposition. The models were assessed by comparing their performance with the judgements of emergency 
physicians (EPs).

Method  This retrospective study obtained data from patients visiting EDs between January 2018 and December 
2019. Internal validation data came from China Medical University Hospital (CMUH), while external validation data 
were obtained from Asia University Hospital (AUH). Nontrauma patients aged ≥ 20 years were included. The models 
were trained using structured data and unstructured data (free-text notes) processed by NLP. The primary outcome 
was death in the ED or admission to the intensive care unit, and the secondary outcome was either admission 
to a general ward or transferal to another hospital. Six machine learning models (CatBoost, Light Gradient Boosting 
Machine, Logistic Regression, Random Forest, Extremely Randomized Trees, and Gradient Boosting) and one Logistic 
Regression derived from triage level were developed and evaluated using EPs’ predictions as reference.

Result  A total of 17,2101 and 41,883 patients were enrolled from CMUH and AUH, respectively. EPs achieved F1 core 
of 0.361 and 0.498 for the primary and secondary outcomes, respectively. All machine learning models achieved 
higher F1 scores compared to EPs and Logistic Regression derived from triage level. Random Forest was selected 
for further evaluation and fine-tuning, because of its robust calibration and predictive performance. In internal valida-
tion, it achieved Brier scores of 0.072 and 0.089 for the primary and secondary outcomes, respectively, and 0.076 
and 0.095 in external validation. Further analysis revealed that incorporating unstructured data significantly enhanced 
the model’s performance. Threshold adjustments were applied to improve clinical applicability, aiming to balance 
the trade-off between sensitivity and positive predictive value.
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Conclusion  This study developed and validated machine learning models that integrate structured and unstructured 
triage data to predict patient dispositions, distinguishing between general ward and critical conditions like ICU admis-
sions and ED deaths. Integrating both structured and unstructured data significantly improved model performance.
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Introduction
The demand for medical resources in emergency depart-
ments (EDs) is increasing rapidly in Taiwan. In 2000, 
approximately 3.3 million individuals visited EDs, and 
this number had increased to more than 4.3 million in 
2019. This increase can be attributed to the expand-
ing elderly population, the implementation of National 
Health Insurance, and improvements in medical resource 
accessibility. Efficiently managing undifferentiated 
patients is critical to improving efficiency and decreasing 
length of stay in EDs, thereby maximizing the use of lim-
ited resources [1, 2].

Triage plays a crucial role as the first step in prioritiz-
ing patients visiting Eds, improving patient safety and 
alleviating overcrowding in the ED [3, 4]. In 2010, Tai-
wan adopted the five-level Taiwan Triage and Acuity 
Scale (TTAS), which is a modified version of the Cana-
dian Triage and Acuity Scale [5]. Scores on the TTAS are 
significantly correlated with hospitalization and medical 
resource consumption rates [6]. However, subjective clin-
ical judgment based on nurse’s experience and external 
environment during triage contributes to high interrater 
variation among triage nurses, resulting in some patients 
being over-triaged or under-triaged [7–9]. Under-triage, 
or the inability to accurately prioritize patients with 
severe, urgent conditions, can lead to delays in time-
sensitive interventions, increasing the risk of clinical 
deterioration, morbidity, and mortality [10–12]. Con-
versely, over-triage results in unnecessary allocation of 
emergency resources, potentially delaying care for more 
critically ill patients [13]. Additionally, the largest patient 
group is triage level 3, but this group shows wide variabil-
ity, from mild to severe cases, complicating the sorting 
process.

Artificial intelligence (AI) has been used to predict 
the prognosis of emergency patients, assisting in clinical 
decision-making processes across various scenarios [14, 
15]. Machine learning models for ED triage have been 
developed to predict clinical outcomes [16–20]. Machine 
learning models for ED triage have been trained using the 
emergency severity index, the Korean Triage and Acu-
ity System, and the Canadian Triage and Acuity Scale. 
Machine learning models for ED triage primarily focus 
on structured data, such as age, vital signs, comorbidity, 
and sex. Free-text notes recorded by experienced nurses 
during triage provide concise yet crucial information 

about patients. Several studies have applied natural lan-
guage processing (NLP) techniques to analyze free-text 
notes made by nurses. Machine learning models that 
incorporate both structured and unstructured data have 
been demonstrated to have the highest prediction perfor-
mance [21–24]. However, most of the AI models utilizing 
structured and unstructured information of triage in the 
literature focus on predicting a single outcome, such as 
either ICU admission or hospital admission.

In the present study, we aimed to address this gap by 
developing a model capable of predicting patient dis-
position to either ward or critical outcome (either ICU 
admission or death in ED) by using both triage informa-
tion from the TTAS and bilingual triage notes in a com-
bination of Chinese and English. By leveraging a broader 
range of patient information, this dual outcome predic-
tion provides a more comprehensive triage decision-
making tool, allowing for nuanced patient allocation that 
meets various levels of care demands within the hospi-
tal setting. To evaluate the performance and ensure the 
generalizability of the model, we employed both internal 
and external validation methods. We also requested EPs 
to make disposition decisions based solely on triage data, 
without access to additional information such as blood 
tests, imaging, or detailed medical histories—similar to 
how the AI models operated. This allowed us to directly 
compare the predictive abilities of the models with those 
of EPs, using the EPs’ judgments as a benchmark to 
explore the differences in their predictive performance. 
We anticipate that machine learning models trained 
with a combination of structured and unstructured 
data can accurately leverage both types of information, 
including NLP-processed unstructured data, to predict 
dispositions.

Method
Study design and participants
This study was retrospective. Data were obtained from 
two hospitals in Taichung, Taiwan, between January 2018 
and December 2019. The data used for establishing the 
model and performing internal validation were obtained 
from China Medical University Hospital (CMUH), which 
is a 1,700-bed, tertiary teaching hospital. Approximately 
160,000 patients visit the ED of CMUH annually. The 
data employed for external validation were obtained 
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from Asia University Hospital (AUH), which is a regional, 
acute-care hospital with 482 beds. Approximately 36,000 
patients visit the ED of AUH annually. China Medical 
University Hospital is a high-level emergency hospital 
equipped with 24/7 consultation services from various 
specialties, including surgery, internal medicine, ortho-
pedics, neurosurgery, neurology, obstetrics and gynecol-
ogy, anesthesiology, and pediatrics [25, 26]. It can provide 
round-the-clock care for acute stroke patients, acute 
coronary syndrome patients, major trauma cases, high-
risk pregnancies, and neonatal care. On the other hand, 
Asia University Hospital is a mid-level emergency hospi-
tal with high-level capabilities in handling acute coronary 
syndrome [25]. It offers 24/7 consultation services with 
specialists in internal medicine, surgery, and orthopedics 
and is also capable of providing 24-hour care for acute 
coronary syndrome patients [26].

The TTAS triage system consists of 2 main categories: 
traumatic and nontraumatic. The nontraumatic category 
is further divided into 13 subcategories that cover 125 
chief complaints (pulmonary, cardiovascular, digestive, 
neurological, musculoskeletal, genitourinary, ophthal-
mologic, dermatologic, obstetric, psychiatric, substance 
misuse, general, and ear, nose, and throat–related). The 
computerized TTAS system determines the appropri-
ate triage level for a patient by considering several fac-
tors. These include (a) whether the case involves trauma; 
(b) the chief complaint reported by the patient; (c) first-
order modifiers such as information about mechanism 
of injury, pain severity, and vital signs, including degree 
of respiratory distress, systemic blood pressure, diastolic 
blood pressure, heart rate, consciousness level, and body 
temperature. If these variables do not provide enough 
information to determine the triage level accurately, the 
system uses second-order modifiers.

Patients without trauma aged 20 years or older and 
presenting at the ED between January 2018 and Decem-
ber 2019 were enrolled. Patients were excluded if they (1) 
were discharged against the medical advice of the EP, (2) 
escaped (left after evaluation by doctor but before dispo-
sition), (3) left without being seen, (4) cancelled their reg-
istration, (5) had an ambiguous disposition, such as being 
documented as “other disposition”, “Receiving treatment 
at ED”, or having an unrecorded disposition or (6) had an 
out-of-hospital cardiac arrest.

We specifically developed electronic questionnaires 
for this study and conducted a random selection of 625 
patients from the CMUH cohort’s testing dataset. As 
in Supplementary file 1, each of the 25 questionnaires 
was designed to include triage data for 25 patients. It 
is important to note that the information provided in 
these questionnaires remain consistent with the infor-
mation used for machine learning, encompassing both 

structured and unstructured data (Supplementary File 
1), with the exception of patient sex, which has been 
removed to mitigate concerns regarding the potential 
disclosure of personal information. These tailored ques-
tionnaires were then privately sent to individual EPs, and 
each EP was required to complete them independently, 
basing their predictions solely on the information pro-
vided within the questionnaire. Among the 34 attending 
EPs who were qualified as emergency specialists by the 
Taiwan Society of Emergency Medicine at CMUH, two 
EPs directly involved in the study were excluded from 
participating. From the remaining pool, 28 EPs were ran-
domly selected to answer the questionnaires.

Data collection and processing
Both structured and unstructured information recorded 
by triage nurses were stored in electronic medical 
records (EMRs). Structured information on age, sex, 
body mass index, vital signs, consciousness level, use 
and type of indwelling tube (e.g., central venous catheter, 
endotracheal tube, tracheostomy tube, arterial catheter, 
nasopharyngeal tube, Foley catheter, and drainage tube), 
whether the patient was transferred and from which 
facility, mode of arrival, request for an ED bed, comor-
bidities, pregnancy status, frequency of ED visits (> 2 
times a week or > 3 times a month), 72-hour unscheduled 
returns.

Unstructured data included clinical notes of chief com-
plaint, and the triage dependence. Clinical notes for chief 
complaints were written in short sentences or words in 
both Chinese and English. While measuring vital signs 
during triage, nurse gathers information from the patient 
or, if needed, from accompanying family members or 
friends. Examples of clinical notes include statements 
like “abdominal pain and diarrhea started a few days ago,” 
“redness and pus in both hips,” and “generalized body 
pain, facial droop since a few days ago, and lower limb 
weakness after getting up at around 6 AM”. Based on the 
gathered information, the nurse selects the appropriate 
category from a computerized triage classification sys-
tem to determine the patient’s final triage level. Triage 
dependence involves triage nurses quickly generating 
specific descriptive phrases by selecting options from a 
computerized list, covering the patient’s system clas-
sification, main symptoms, and key findings, including 
specific vital signs or pain scores. For example, “patient 
belongs to the nervous system category, presenting with 
dizziness/vertigo, positional, without other neurological 
symptoms,” or “patient belongs to the respiratory system 
category, presenting with shortness of breath, mild res-
piratory distress (SpO2: 92–94%).” This process directly 
correlates with the determination of the triage level.
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Final dispositions (e.g., admitted to intensive care unit 
(ICU) or ward, discharged, discharged against medical 
advice, expired, or escaped) were also recorded in EMRs. 
We handled categorical variables by converting them 
using one-hot encoding. This approach ensures that the 
categorical data are represented in a binary format, suit-
able for input into the machine learning models.

Natural language processing
NLP is increasingly being used in the health care sector. 
In NLP, sophisticated algorithms and machine learn-
ing techniques are used to search, analyze, and interpret 
massive volumes of patient data and to extract valuable 
insights and meaningful concepts from clinical notes that 
were previously considered lost due to the textual nature 
of the data [27].

We processed the unstructured data using a series of 
NLP techniques. First, we performed data cleansing, 
which involved removing irrelevant information, stand-
ardizing formats, and handling missing or noisy data. 
This step included removing stopwords, punctuation, 
and irrelevant characters, as well as performing tokeniza-
tion and lemmatization to standardize the text. Chinese 
word segmentation was performed in Jieba in accurate 
mode [28]. To improve the accuracy of the segmenta-
tion, we incorporated a specialized medical dictionary 
containing relevant medical terms (e.g., disease names, 

symptoms, and treatments) into Jieba, ensuring the accu-
rate segmentation of medical terminology. The key vari-
ables in this stage were the words, terms, and segmented 
phrases, which represented important clinical terminol-
ogy. which represented important clinical terms. The 
detailed list of each Chinese term and phrase extracted 
from unstructured data, along with their English transla-
tions, is provided in Supplementary Table 1. These vari-
ables were then encoded using one-hot encoding, where 
each word in the vocabulary was represented by a binary 
vector with a ‘1’ indicating the presence of that word in 
the text and a ‘0’ indicating its absence. This transformed 
the textual data into numerical vectors suitable for model 
input.

Additionally, we integrated structured data (e.g., 
patient demographics, lab results) with the encoded text 
features. These structured variables were preprocessed 
as follows: numerical variables (e.g., age, lab test results) 
were normalized, while categorical variables (e.g., gender, 
diagnosis category) were encoded using one-hot encod-
ing. We concatenated the encoded text features and 
structured data into a single feature vector, which was 
then used as input to our machine learning model.

Training pipeline
The model training process is illustrated in Fig.  1. To 
conduct internal validation, we partitioned the CMUH 

Fig. 1  Flow chart of patient enrollment and model establishment at AUH and CMUH. AUH, Asian University Hospital; CMUH, China Medical 
University Hospital; EP emergency physician; OHCA out-of-hospital cardiac arrest
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cohort, allocating 70% for training and 30% for testing 
purposes. Within the training data set, we employed 
10-fold cross validation to evaluate the model’s per-
formance. For missing or outlier values, we used MICE 
(Multiple Imputation by Chained Equations) for imputa-
tion in both the test set and external validation cohort. 
This method iteratively imputes missing values by creat-
ing multiple predictions based on other variables in the 
dataset. Each missing value is estimated by drawing from 
a distribution that considers the relationships between 
variables, improving robustness and minimizing poten-
tial bias introduced by simpler imputation methods [29]. 
Outlier values were defined as follows: systemic blood 
pressure > 300 mmHg or < 30 mmHg, diastolic blood 
pressure > 300 mmHg, systemic blood pressure lower 
than diastolic blood pressure, heart rate > 300 beats/min 
or < 20 beats/min, respiratory rate > 60 breaths/min, body 
temperature > 45°C or < 30°C, and body mass index > 150 
kg/m² or < 5 kg/m². Regarding to class imbalance, we 
did not apply resampling methods. Instead, we adjusted 
sample weights according to each model to achieve com-
parable recall and specificity across the models for com-
parison purposes. The testing data set served to internally 
validate the previously trained models, with the true out-
comes blinded during this evaluation phase to prevent 
any potential bias. AUH cohort was used for external val-
idation to evaluate the model’s generalizability.

We constructed multiclass classifiers (3 classes) using 
the following 6 commonly employed machine learning 
models: Categorical Boosting (CatBoost), Light Gradi-
ent Boosting Machine (LGB), Logistic Regression (LR), 
Random Forest, Extremely Randomized Trees, and Gra-
dient Boosting (GB) [30–35]. These models were chosen 
because they represent a diverse range of machine learn-
ing techniques, including decision trees (Random For-
est, Extremely Randomized Trees), boosting methods 
(CatBoost, LGB, Gradient Boosting), and linear models 
(LR), allowing us to compare the performance of differ-
ent approaches on the same dataset to identify the best-
performing model. These models are open source and 
are widely used in machine learning models for predict-
ing medical issues [36–41]. Besides, a logistic regression 
(LR) model was trained using only the TTAS level (LR-
TTAS model) and was compared with other models and 
EPs. The model outputs are transformed into predicted 
classes using the Argmax function, which selects the 
class with the highest predicted probability as the final 
prediction. The model with the best overall performance 
in both discrimination and calibration was selected and 
then used for fine tuning and assessing the influence of 
various types of input data (structured and unstructured) 
on performance.

We employed a wrapper method for feature selection 
to identify relevant features, reducing dimensionality 
and enhancing model efficiency by eliminating redun-
dant data, minimizing overfitting, and decreasing com-
putational costs. This was followed by random search 
for hyperparameter fine-tuning, utilizing 5-fold cross-
validation. Random search offers advantages over grid 
search by exploring a broader range of hyperparameter 
combinations in less time. Random search allows for a 
more efficient and often more effective sampling of the 
hyperparameter space, increasing the likelihood of find-
ing near-optimal configurations without exhaustive test-
ing [42].

Analysis
The performance of each model was assessed by calcu-
lating the area under the receiver operating characteris-
tic curve (AUROC) using a one-versus-rest approach. 
Additional metrics included F-1 score, accuracy, sensitiv-
ity, specificity, and positive and negative predictive val-
ues. To further ensure the objectivity of the evaluation, 
the analysis was conducted using automated processes 
to minimize subjective influence. Additionally, we incor-
porated the DeLong test to evaluate the significance of 
performance differences between the models [43, 44]. We 
have also included the calibration plots and Brier scores 
to evaluate the performance. Calibration plots were 
employed to assess how well the predicted probabilities 
align with the actual outcomes, providing a visual repre-
sentation of the model’s calibration. The Brier score was 
used as a quantitative measure to evaluate the accuracy 
of the probabilistic predictions, with lower scores indi-
cating better overall model performance, incorporating 
both discrimination and calibration [45].

Based on the sample size calculation, selecting 64 
patients would achieve the required statistical power 
(Power = 0.80), significance level (alpha = 0.05), and a 
medium effect size (Effect size = 0.5) for a population of 
172,101. However, we chose 625 patients and distrib-
uted their data across 25 questionnaires. This approach 
ensures a representative patient population in the 
study questionnaires while also reducing the burden on 
respondents, thereby improving the quality and com-
pleteness of the questionnaire responses. Regarding the 
performance of EPs, since physicians were instructed 
to predict categories (discharge, admission to ward, 
or admission to ICU) rather than probabilities or risks, 
AUROC is not suitable for evaluation. Therefore, other 
metrics mentioned above will be used for assessment.

In addition to using importance rankings, we applied 
SHAP (SHapley Additive exPlanations) values to 
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enhance the interpretability of our model [46]. SHAP 
values clarify each feature’s contribution to predic-
tions, with the summary plot illustrating how feature 
variations influence model outcomes. This approach 
bridges medicine and data science by providing the 
explanation behind the model’s outputs, allowing us 
to verify that the model’s operation aligns with clinical 
practice and knowledge [47].

Outcomes
The primary outcome was critical disposition, which 
was death in ED (either in-hospital cardiac arrest in 

the ED with/without return of spontaneous circula-
tion or critical discharge) or direct ICU admission. 
The secondary outcome was general ward admission 
or transferal to another hospital.

Result
A total of 187,606 nontrauma patients aged 20 years 
or older visited the ED of the CMUH during the 
study period. After exclusions, the final cohort con-
sisted of 172,101 patients (Fig.  1). The patients were 
randomly divided into 2 groups: the training group 
containing 120,470 patients, and the testing group 
comprising 51,631 patients. Next, 25 questionnaires 

Table 1  Demographic characteristics of patients who visited the ED of CMUH (N = 172101)

CMUH China Medical University Hospital, COPD Chronic obstructive pulmonary disease, CVC Central venous catheter, DBP Diastolic blood pressure, ED Emergency 
department, SBP Systolic blood pressure, SD Standard deviation
a Admission to intensive care unit or in-hospital cardiac arrest in emergency department
b Admission to general ward or transfer to other hospital

Variables Variables

Age, mean ± SD 52.32 (20.13) Comorbidity, No. (%)

Sex-female, No. (%) 91961 (54.11%) Diabetes mellitus 28693 (16.67)

Body mass index, mean ± SD 24.43 (35.37) Hypertension 46255 (26.88)

Vital signs, mean ± SD Congestive heart failure 1851 (1.08)

  Respiratory rate (per min) 20.29 (2.12) Ischemic heart disease 5115 (2.97)

  SBP (mmHg) 135.21 (25.77) End-stage renal disease 5572 (3.24)

  DBP (mmHg) 84.59 (17.01) Liver cirrhosis 2834 (1.65)

  Heart rate (bpm), 91.86 (21.05) COPD 1793 (1.04)

  Shock index 0.71 (0.35) Malignancy 18361 (10.67)

  Body temperature (C) 36.96 (2.17) Pregnancy, No. (%) 2554 (1.48)

Consciousness, No. (%) Intensive ED visits, No. (%)

  Alert 7173 (4.17) Over twice in a week 12986 (7.55)

  Non-alert 164928 (95.83) Over 3 times in a month 7742 (4.50)

Indwelling tube, No. (%) 72-hour ED return, No. (%) 3181 (1.87)

  CVC 52 (0.03) 24-hour ED return, No. (%) 996 (0.58)

  Endo 721 (0.42) System of complaints, No. (%)

  Tracheostomy 1133 (0.67) Gastrointestinal-related 48565 (28.22)

  A-line 13 (0.01) Neurological-related 29124 (16.92)

  Drainage tube 232 (0.14) General and others 25337 (14.72)

  Nasogastric tube 3441 (2.02) Cardiovascular-related 20488 (11.90)

  FOLEY catheter 2392 (1.41) Respiratory-related 14318 (8.32)

Transferred, No. (%) 18616 (10.82) Urological-related 9875 (5.74)

Usage of ambulance, No. (%) 21427 (12.45) Dermatologic-related 9081 (5.28)

Triage, No. (%) Musculoskeletal-related 5735 (3.33)

  1 8061 (4.68) Ear, Nose, and Throat 4936 (2.87)

  2 35050 (20.37) Other 4643 (2.70)

  3 115202 (66.94) Disposition, No. (%)

  4 12925 (7.51) Primary outcomea 6427 (3.73)

  5 863 (0.50) Secondary admissionb 39796 (23.12)

Request for an ED Bed, No (%) 30325 (17.62) Discharge 125878 (73.14)

Fever, No. (%) 32210 (18.72)
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were sent to 28 EPs, and 27 complete questionnaires 
were returned. The median post-residency clini-
cal experience of the EPs was 8 years (interquartile 
range: 5.25–10.75 years). The patients’ demographic 
characteristics are listed in Table 1. The primary out-
come was observed in 6,427 patients (3.73%), and the 
secondary outcome was observed in 39,796 patients 
(23.1%). Table 2 shows that the proportion of patients 
with primary or secondary outcomes was inversely 
related to triage levels, with the highest proportions of 
both outcomes observed at TTAS level 1. Conversely, 
discharge rates rose as TTAS levels increased. Nota-
bly, the proportion of deaths in the ED was remark-
ably low, remaining below 1% across all TTAS levels 
except for level 1, where it reached 2.91%.

A total of 44,947 nontrauma patients were identi-
fied from AUH, and after exclusions, we enrolled 
41,883 patients with a mean age of 53.1 (Fig. 1). In this 
cohort, the proportion of patients at triage levels 1 and 
2 was lower than at CMUH, while the proportion of 
less urgent patients (those at levels 4 and 5) was higher 
(Supplementary Table  2). Additionally, the propor-
tions of patients with endotracheal tubes and trache-
ostomies were lower, and no patients were admitted 
with arterial lines or central venous catheters. The 
rate of primary outcome was also lower at AUH. The 
gastrointestinal, neurologic, general, cardiovascular, 
and respiratory-related systems were the most com-
mon systems of complaint at both CMUH and ANH. 
As shown in Supplementary Table  3, the missing and 
outlier values in both CMUH and AUH datasets are 
primarily concentrated in the vital signs categories, 
with rates not exceeding 0.5%. The only exception is 
the BMI in the AUH dataset, which has a high missing 
rate of 33.9%.

Model performance
In internal validation, the performance of each machine 
learning model is summarized in Table 3. For the primary 
outcome, although the boosting models demonstrated 
significantly better AUROC (Supplementary Table 4) and 
F1 scores for predicting the primary outcome compared 
to other models, Fig. 2A indicates that these three models 
(LGBM, CatBoost and GB) exhibit a notable overestima-
tion of risk in their calibration. In contrast, while Random 
Forest did not achieve the highest AUROC, it yielded the 
highest F1 score of 0.500 and the lowest Brier score of 
0.072. Besides, most models achieved higher F1 scores 
compared to the F1 score of 0.361 for EPs. Given the 
lower prevalence of the primary outcome, most models 
demonstrated higher specificity and negative predictive 
value. For the secondary outcome, compared to EPs and 
LR-TTAS, all models improved performance with Ran-
dom  Forest standing out with the highest AUC if 0.847 
and the lowest Brier score of 0.089. LR-TTAS showed the 
poorest performance with a F1 score of 0 in the primary 
outcome and 0.171 in the secondary outcome. As shown 
in Supplementary Table 4, the DeLong test indicated that 
the AUROC of Random Forest was significantly higher 
than that of the other models. As seen in Fig.  2B, LR 
exhibits the largest deviation from perfect calibration, 
consistently overestimating risk across the probability 
range.

The results of external validation are shown in Table 4, 
and overall performance, such as sensitivity and speci-
ficity, was lower than in internal validation. For the pri-
mary outcome, although AUROC of Random Forest was 
not outstanding and was lower than that of the boosting 
models and even logistic regression (as shown in Sup-
plementary Table 4), it achieved the highest F1 score of 
0.420, along with robust specificity and NPV. Notably, 

Table 2  Distribution of disposition by TTAS level in the CMUH dataset (Total patients= 172101)

CMUH China Medical University Hospital, ED Emergency department, ICU Intensive care unit, TTAS Taiwan Triage and Acuity Scale
a Death in ED includes patients who died despite resuscitation efforts in the ED or those were not resuscitated because of having a signed Do Not Resuscitate order

TTAS

Level 1 Level 2 Level 3 Level 4 Level 5

Discharge 1028 (12.8) 17736 (50.6) 93926 (81.5) 12337 (95.5) 851 (98.6)

Primary outcome 2888 (35.8) 2664 (7.6) 854 (0.7) 19 (0.2) 2 (0.2)

Admission to ICU 2710 (33.6) 2618 (7.5) 836 (0.7) 19 (0.2) 2 (0.2)

Death in EDa 235 (2.91) 88 (0.25) 31 (0.03) 0 (0.0) 0 (0.0)

Secondary outcome 4145 (51.4) 14650 (41.8) 20422 (17.7) 569 (4.4) 10 (1.2)

Admission to ward 4060 (50.4) 14467 (41.3) 20062 (17.4) 554 (4.3) 10 (1.2)

Transfer to other hospital 85 (1.0) 183 (0.5) 360 (0.3) 15 (0.1) 0 (0.0)

Total 8061 35,050 115,202 12,925 863
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Fig. 2  This figure presents calibration plots for multiple predictive models assessing their performance in predicting (A) primary and (B) secondary 
outcomes in the CMUH test set. Each model’s Brier score, indicating the accuracy of probabilistic predictions, is displayed along with 95% CI. The 
shaded areas represent the 95% CI for each model’s calibration curve. CatBoost, Categorical Boosting; CI, confidence intervals; CMUH, China Medical 
University Hospital; ET, Extremely Randomized Trees; GB, Gradient Boosting; LGB, Light Gradient Boost Machine; LR, Logistic Regression; RF, Random 
Forest; LR-TTAS, Logistic Regression-Taiwan Triage Acuity scale



Page 9 of 18Chang et al. BMC Emergency Medicine          (2024) 24:237 	

it also recorded the lowest Brier score among all mod-
els. Figure 3A shows that in the AUH primary outcome 
calibration, Random Forest and Extremely Randomized 
Trees have the closest calibration to the ideal line. In con-
trast, other models, such as Logistic Regression, tend to 
shift more toward the overestimation quadrant, partly 
reflected by their higher Brier scores. In the secondary 
outcome, LGB and CatBoost models reached the highest 
AUROC and F1 score; however, Fig. 3B displayed a more 
pronounced overestimation risk of these boosting mod-
els, leading to less favorable Brier scores than Random 
Forest and Extremely Randomized Tree. Compared to 
the other models, the LR-TTAS model also had the low-
est AUROC and F1 score for both primary and secondary 
outcome.

After using a comprehensive evaluation that included 
Brier Score, AUROC, and F1 score, we selected Ran-
dom Forest as the model for further analysis. Although 
it does not have the highest AUROC, Random For-
est demonstrated strong F1 scores in both internal and 
external validation, and its calibration—except for the 
ET model—outperformed the other models. Therefore, 
considering both reliable calibration and discrimination, 
Random Forest achieved the best overall performance.

We further analyzed how different feature types impact 
the performance of the Random Forest model. As shown 

in Fig.  4, combining the unstructured and structured 
set improves model performance for both primary and 
secondary outcomes. Table  5 provides detailed results, 
showing that using all features significantly increases the 
AUROC, as confirmed by the DeLong test. For example, 
the AUROC for the secondary outcome increased from 
0.761 to 0.847, and the F1 score improved from 0.478 to 
0.580. While the improvements in NPV and specificity 
for predicting the primary outcome were relatively mod-
est, other metrics such as F1 score, sensitivity, and PPV 
showed substantial enhancement.

Through feature selection, we eliminated 64 features, 
including those processed through NLP, resulting in a 
final set of 103 features. Additionally, we fine-tuned the 
hyperparameters using random search, with the results 
presented in Supplementary Table 5. The optimal values 
for hyperparameters of Random Forest model included 
a maximum depth of 19, a minimum sample leaf of 
2, a minimum sample split of 7, and 178 estimators. In 
Table  6, we adjusted thresholds across three categories 
to simulate practical clinical applications and evaluate 
predictive outcomes. The optimal threshold was identi-
fied based on Youden’s J Statistic, aiming to maximizes 
the difference between the True Positive Rate (sensitiv-
ity) and the False Positive Rate (1-specificity). However, 
a lower threshold for primary outcomes led to a high rate 

Table 3  Prediction ability of seven machine learning models and reference for internal validation at CMUH

AUROC Area under receiver-operator curve, BS Brier score, CMUH China Medical University Hospital, EPs Emergency physicians, ET Extremely Randomized Trees, GB 
Gradient Boosting, LGB Light Gradient Boosting Machine, LR Logistic Regression, LR-TTAS Logistic Regression-Taiwan Triage Acuity scale, NPV Negative predictive value, 
PPV Positive predictive value, RF Random Forest

*The p-values in the table were derived using the DeLong test, which involved pairwise comparisons of each model’s AUROC with that of the model ranked directly 
above it in performance

AUROC p-value* BS F1 score Accuracy Sensitivity PPV Specificity NPV

Primary outcome
  LGB 0.937 - 0.089 0.494 0.954 0.589 0.425 0.968 0.983

  CatBoost 0.935 0.06 0.089 0.479 0.950 0.602 0.398 0.964 0.984

  GB 0.932 0.06 0.094 0.479 0.951 0.584 0.406 0.966 0.983

  LR 0.928 < 0.05 0.114 0.415 0.924 0.703 0.294 0.933 0.987

  RF 0.926 0.50 0.072 0.500 0.955 0.591 0.433 0.969 0.983

  ET 0.919 < 0.05 0.072 0.484 0.953 0.575 0.417 0.968 0.983

  LR-TTAS 0.858 < 0.05 0.095 0.000 0.962 0.000 0.000 1.000 0.962

  EPs N/A N/A N/A 0.361 0.942 0.550 0.268 0.954 0.986

Secondary outcome
  RF 0.847 - 0.089 0.580 0.782 0.655 0.519 0.820 0.889

  ET 0.843 < 0.05 0.089 0.575 0.782 0.643 0.521 0.824 0.886

  LGB 0.841 0.06 0.106 0.600 0.786 0.701 0.525 0.811 0.901

  CatBoost 0.839 < 0.05 0.106 0.600 0.791 0.682 0.535 0.824 0.897

  GB 0.829 < 0.05 0.111 0.586 0.782 0.675 0.518 0.814 0.894

  LR 0.800 < 0.05 0.129 0.553 0.758 0.654 0.480 0.789 0.885

  LR-TTAS 0.666 < 0.05 0.117 0.171 0.771 0.103 0.499 0.969 0.784

  EPs N/A N/A N/A 0.498 0.674 0.626 0.413 0.691 0.842
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Fig. 3  This figure presents calibration plots for multiple predictive models assessing their performance in predicting (A) primary and (B) secondary 
outcomes in the AUH cohort. Each model’s Brier score, indicating the accuracy of probabilistic predictions, is displayed along with 95% CI. The 
shaded areas represent the 95% CI for each model’s calibration curve. AUH, An-Nan Hospital; CatBoost, Categorical Boosting; CI, confidence 
intervals; ET, Extremely Randomized Trees; GB, Gradient Boosting; LGB, Light Gradient Boost Machine; LR, Logistic Regression; RF, Random Forest; 
LR-TTAS, Logistic Regression-Taiwan Triage Acuity scale



Page 11 of 18Chang et al. BMC Emergency Medicine          (2024) 24:237 	

of false predictions. For instance, out of 250 patients, 
while 8 patients were correctly identified as having a pri-
mary outcome, 35 patients were incorrectly classified as 
such. While raising the threshold for primary outcomes 
may reduce screening rates, it significantly decreases the 
likelihood of false alarms. For example, when the thresh-
old is adjusted to 0.20, only 5 patients are correctly diag-
nosed with a primary outcome, but the number of false 
positives decreases to just 6. For discharge predictions, 
the overall accuracy was high, with error rates ranging 
around 14–25 cases. For secondary outcomes, predic-
tions varied depending on the threshold combinations.

Feature importance
Figure 5 shows the top predictors for both outcomes were 
largely similar, including transferred, age, shock index, 
and BMI. To further explore our model’s interpretabil-
ity, we used SHAP values. As illustrated in Supplemen-
tary Fig. 1A, lower values in “Triage Level” and “Glasgow 
Coma Scale” increase the model’s predicted likelihood of 
the primary outcome. Additionally, patients who arrive 
by ambulance, are transferred, or require a bed in the 
ED are also associated with a higher predicted likelihood 
of the primary outcome. For the secondary outcome, 
similar features were influential, with additional factors 
such as older age, presence of fever, elevated body tem-
perature, increased heart rate, and higher shock index 

positively correlating with the model’s prediction of the 
primary outcome (Supplementary Fig. 1B).

Discussion
We compared the predictive performance of machine 
learning models with assessments made by EPs. The 
machine learning models accurately predicted both the 
primary, and the secondary outcome with high AUROC 
and F1 scores, demonstrating their potential to assist 
triage nurses in determining patient priorities by pre-
dicting final outcomes upon leaving the ED. The results 
also demonstrate that integrating structured and 
unstructured data can significantly enhance the predic-
tive performance of the models. This approach reflects 
real-world clinical practice and could optimize triage 
decisions in emergency settings.

In clinical practice, EPs make disposition decisions 
based on a range of factors that can vary by country 
and the level of the hospital. For example, patients with 
the same triage level may receive different dispositions 
from EPs at CMUH compared to those at AUH, reflect-
ing localized decision-making processes. This variabil-
ity, along with differences in admission criteria between 
tertiary hospitals like CMUH and regional hospitals, 
likely contributed to the decline in model performance 
observed during external validation, especially regard-
ing secondary outcomes. To mitigate overfitting in our 
retrospective study, we employed several strategies. 

Table 4  Prediction ability of seven machine learning models and reference for external validation at AUH

AUH Aisa University Hospital, AUROC Area under receiver-operator curve, BS Brier score, ET Extremely Randomized Trees, GB Gradient Boosting, LGB Light Gradient 
Boosting Machine, LR Logistic Regression, LR-TTAS Logistic Regression-Taiwan Triage Acuity scale, NPV Negative predictive value, PPV Positive predictive value, RF 
Random Forest

*The p-values in the table were derived using the DeLong test, which involved pairwise comparisons of each model’s AUROC with that of the model ranked directly 
above it in performance

AUROC p-value* BS F1 score Accuracy Sensitivity PPV Specificity NPV

Primary outcome
  GB 0.933 - 0.086 0.409 0.962 0.429 0.391 0.979 0.982

  LGB 0.932 0.45 0.085 0.409 0.962 0.423 0.396 0.979 0.982

  CatBoost 0.929 0.08 0.085 0.410 0.961 0.442 0.382 0.977 0.982

  LR 0.928 0.57 0.099 0.393 0.949 0.534 0.311 0.962 0.985

  RF 0.916 < 0.05 0.076 0.420 0.962 0.449 0.395 0.978 0.982

  ET 0.905 < 0.05 0.077 0.406 0.961 0.432 0.384 0.978 0.982

  LR-TTAS 0.896 < 0.05 0.090 0.000 0.969 0.000 0.000 1.000 0.969

Secondary outcome
  LGB 0.815 - 0.103 0.573 0.791 0.618 0.535 0.842 0.882

  CatBoost 0.815 0.40 0.103 0.573 0.798 0.599 0.550 0.856 0.879

  RF 0.807 < 0.05 0.095 0.552 0.790 0.572 0.534 0.854 0.872

  GB 0.805 0.33 0.106 0.560 0.792 0.582 0.539 0.854 0.874

  ET 0.802 0.18 0.096 0.541 0.789 0.550 0.533 0.859 0.867

  LR 0.792 < 0.05 0.117 0.544 0.771 0.601 0.496 0.821 0.875

  LR-TTAS 0.676 < 0.05 0.113 0.136 0.770 0.080 0.972 0.456 0.782
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Fig. 4  Receiver operating characteristic curves of physician assessments and LR-TTAS and Random Forest models with different training input, 
including both structured and unstructured data and only one of them. A Prediction of primary outcome. B Prediction of secondary outcome. 
AUROC, area under receiver operating characteristic curve; LR, Logistic Regression; TTAS, Taiwan Triage and Acuity Scale
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First, we used 10-fold cross-validation to prevent the 
model from being too tailored to any single subset of 
data, improving generalization. Second, we applied 
feature selection to identify and retain only the most 
relevant features, reducing dimensionality and helping 
the model focus on key predictive variables. This not 
only improves model efficiency but also reduces the 
risk of overfitting by eliminating noise and irrelevant 
data. Last, we adjusted sample weights in the models 
to handle class imbalance, ensuring that the model did 
not overfit to the majority class at the expense of the 
minority class.

The F-1 score for EP assessments were 0.361, and 
0.498 for the primary outcome, and secondary outcome, 
respectively. We intentionally did not include the same 
patient across different questionnaires to compare con-
sistency among physicians, recognizing the inherent 
variability in clinical judgment, which aligns with real-
world clinical practice. This approach also helped prevent 
discussions among EPs that could potentially lower the 
reliability and validity of their responses. By standardiz-
ing the format of all data presented, we ensured that the 
information provided to the physicians was consistent 
and complete, thereby minimizing external influences on 

Table 5  Performance comparison of Random Forest using different feature sets in the CMUH dataset

AUROC Area under receiver-operator curve, CMUH China Medical University Hospital, LR-TTAS Logistic Regression-Taiwan Triage Acuity scale, NPV Negative predictive 
value, PPV Positive predictive value

*The p-values in the table were derived using the DeLong test, which involved pairwise comparisons of each model’s AUROC with that of the model ranked directly 
above it in performance

AUC​ p-value* F1 score Accuracy Sensitivity PPV Specificity NPV

Primary outcome
All features 0.926 - 0.500 0.955 0.591 0.433 0.969 0.983

Structured set 0.906 < 0.05 0.468 0.951 0.561 0.402 0.967 0.982

Unstructured set 0.861 < 0.05 0.406 0.941 0.526 0.331 0.958 0.981

LR-TTAS 0.858 < 0.05 0.000 0.962 0.000 0.000 1.000 0.962

Secondary outcome 

All features 0.847 - 0.580 0.782 0.655 0.519 0.820 0.889

Structured set 0.812 < 0.05 0.534 0.756 0.611 0.475 0.799 0.874

Unstructured set 0.761 < 0.05 0.478 0.745 0.509 0.450 0.815 0.848

LR-TTAS 0.666 < 0.05 0.171 0.771 0.103 0.499 0.969 0.784

Table 6  Threshold-specific predictions for discharge, primary, and secondary outcomes per 250 emergency department visits in the 
CMUH test cohort

CMUH China Medical University Hospital, ED Emergency department
a The optimal thresholds were determined based on Youden’s J Statistic

Threshold Prediction per 250 ED visits

Discharge Primary Secondary Discharge Primary Secondary

True False F1 True False F1 True False F1

0.74a 0.04a 0.22a 145 14 0.849 8 35 0.309 23 25 0.427

0.72 0.06 0.22 149 15 0.857 8 25 0.364 26 27 0.475

0.72 0.08 0.20 149 15 0.857 7 19 0.406 30 30 0.508

0.72 0.10 0.18 149 15 0.857 7 15 0.439 32 32 0.528

0.66 0.12 0.22 157 19 0.875 7 13 0.461 30 24 0.537

0.62 0.14 0.24 162 22 0.883 6 11 0.478 29 20 0.540

0.58 0.14 0.28 166 25 0.889 6 11 0.479 26 16 0.522

0.66 0.16 0.18 158 19 0.875 6 9 0.492 32 26 0.561

0.62 0.18 0.20 162 22 0.883 6 8 0.497 31 21 0.561

0.60 0.20 0.20 165 24 0.887 5 6 0.502 30 20 0.564
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Fig. 5  Fifteen most influential features for Random Forest model prediction of (A) primary outcome and (B) secondary outcome. ED, emergency 
department; HTN, hypertension
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their decision-making. Zlata et al. proposed that to pre-
dict admission (without further differentiating between 
ICU or ward) or discharge status, EPs use triage infor-
mation (vital signs, nursing notes, and EMRs) without 
physically examining patients. The AUROC obtained was 
0.703 (95% CI: 0647 − 0.760) with a sensitivity of 51.8% 
and a specificity of 88.9% [48]. Of note, it is important to 
recognize that clinicians in practice make decisions based 
on a comprehensive evaluation of the patient’s condition, 
not solely on triage information. For machine learning 
models, rare or unique cases pose a challenge due to their 
infrequent occurrence, making accurate predictions dif-
ficult. In contrast, clinicians excel in these situations as 
they can leverage their extensive clinical experience and 
expertise, integrating multiple aspects of a patient’s pres-
entation—such as medical history, symptoms, and test 
results—to make comprehensive judgments. This allows 
them to apply past experiences flexibly and use intuition 
and clinical reasoning to make more accurate decisions, 
even in uncommon scenarios, an ability that current 
machine learning models struggle to fully replicate.

Our findings indicate that the LR-TTAS model was 
unable to accurately distinguish between patients requir-
ing general ward admission and those requiring ICU 
admission. Consequently, the predictive performance 
for the primary outcome was relatively poor in both the 
internal and external validation. This may have been due 
to an overlap in the distribution of TTAS levels between 
the 2 outcome groups. Therefore, relying solely on TTAS 
level as a training feature led to inaccurate classification.

While simpler models, such as LR, offer higher inter-
pretability, they often come at the cost of predictive 
accuracy, especially in high-dimensional data settings 
like ours. In contrast, complex models, such as Random 
Forest, excel in handling high-dimensional data and cap-
turing complex feature interactions, providing superior 
accuracy. Given our goal to provide precise and timely 
predictions in critical environments such as the ED, we 
prioritized models that offer higher performance. To bal-
ance the trade-off between accuracy and interpretability, 
we applied model-agnostic interpretability tools, includ-
ing feature importance ranking and SHAP values. These 
tools help identify key features influencing predictions 
and enhance interpretability by illustrating each feature’s 
contribution to individual predictions, thereby improv-
ing transparency and trust in our model’s output. The 
SHAP summary plot further confirmed that the model’s 
decision-making aligns well with clinical understanding, 
reinforcing confidence in its predictions.

In the Random Forest for predicting primary and sec-
ondary outcomes, referral from other healthcare insti-
tutions is a key predictive feature, as CMUH, a medical 
center, frequently receives severe or rare cases requiring 

advanced care and hospitalization. Age is widely recog-
nized as a risk factor for higher morbidity and mortality, 
aligning with its predictive value for ICU admission and 
some studies also found age was a relative important fac-
tors when predicting either ward or ICU admission [16, 
49–51]. Other features of vital signs, such as heart rate, 
blood pressure, body temperature and shock index, are 
key components of various warning systems, including 
NEWS, MEWS, and REMS [52–54].

When using the model, it is essential to evaluate the 
impact of misclassifying patients with mild conditions 
as severe and vice versa, as each type of misclassification 
could differently affect the overall ED system and patient 
safety. For example, as shown in Table 6, using the opti-
mal thresholds may result in an excess of falsely classi-
fied critical patients, which could excessively consume 
resources in the resuscitation area and delay treatment 
for truly urgent cases. After increasing the threshold for 
primary outcomes, although this may result in missing 
one to three primary outcome patients per 250 cases, it 
can significantly reduce false alarms and help prevent the 
critical area from becoming overwhelmed. Any severe 
cases not flagged by the model can still be identified 
through triage nurses or further clinical assessments and 
examinations. At the same time, lowering the threshold 
for discharge predictions allows for more efficient iden-
tification of mild cases. However, excessively decreas-
ing this threshold could lead to a substantial influx of 
patients requiring intensive care within the mild area, 
potentially necessitating additional support from other 
areas in the ED, which may also cause operational chal-
lenges. Therefore, while the model can be trained to iden-
tify an optimal threshold using various techniques, in 
practice, thresholds should be adjusted to align with the 
specific clinical needs and resource availability of each 
setting.

Comparison to other studies
Several studies have attempted to predict admission out-
comes in EDs by using NLP [23, 24, 55, 56]; however, 
none of the studies distinguished between admission to 
the ICU and to a ward. Resource consumption differs 
between patients admitted to a ward and those admitted 
to the ICU. Therefore, rather than solely judging admis-
sion or not, it is also critical to identify those severely ill 
patients with demand for intensive care. Raita and Kwon 
et al. found that machine learning models outperformed 
traditional triage systems in predicting various outcomes, 
including discharge and admission to an ICU or ward 
[16]. Our models offer the potential for optimization by 
integrating NLP, thus enabling better differentiation of 
critically ill patients. Structured data, such as vital signs 
and chronic disease information, provides quantitative 
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and standardized details, while unstructured data, like 
chief complaints, offers qualitative insights (e.g., descrip-
tions of pain as dull, sharp, or tearing). Combining both 
types allows for a more comprehensive understanding of 
the patient’s condition. Unstructured data can provide 
context that might be missing from structured data; for 
instance, a triage note mentioning chest pain with cold 
sweats can add valuable context to elevated heart rate 
and blood pressure readings, leading to more accurate 
predictions. Of note, there are also some limitations 
of current NLP techniques, particularly in processing 
medical text. Medical jargon, abbreviations, and domain-
specific terminology can present challenges for stand-
ard NLP models, often leading to misinterpretations or 
incomplete data extraction. Additionally, the presence 
of mixed-language notes, as often occurs in multilingual 
healthcare settings, further complicates the text process-
ing. To mitigate these issues, we applied domain-specific 
tokenizers and customized dictionaries to better capture 
medical terminology.

In recent years, large language models (LLMs) have 
rapidly evolved and been applied to the field of triage. 
Generally, performance varies significantly across differ-
ent models or versions [57, 58]. Limited research exists 
on using LLMs to further predict patient outcomes. 
Arian et al. evaluated 30 patients using ChatGPT-3.5 to 
determine triage levels and assess its outcome prediction 
capabilities [59]. For hospital admission, time-depend-
ent conditions, and critical situations, the AUROC 
ranged from 0.78 to 0.81, while performance in predict-
ing 72-hour mortality was the lowest (AUROC of 0.669). 
They converted all triage data for each patient into a sin-
gle vignette for the LLM, allowing the model to make a 
final judgment. In contrast, we process structured data 
and clinical notes separately, and some differences exist 
in the data used. This approach may contribute to the 
variations in performance outcomes. How to integrate 
LLMs into our pipeline to optimize model performance 
is a crucial topic in the future.

Our research has several limitations. First, several 
potentially confounding factors—such as medication use, 
socioeconomic status, smoking status, betel nut chewing 
status, and alcohol consumption—were not considered. 
These data are usually not obtained during triage due 
to limited time and privacy concerns. Second, regard-
ing missing data, BMI was the only feature with more 
than 20% missing values. We addressed this by using 
imputation methods to fill in the missing values, aim-
ing to minimize any impact of incomplete data on model 
performance. Third, we encountered data imbalance in 
both internal and external validation datasets. Although 
resampling techniques were not applied, we addressed 
the imbalance by adjusting sample weights. Given our 

large dataset, this approach preserved the original data 
distribution, reduced computational complexity, and 
minimized overfitting risks, thereby enhancing model 
performance, and maintaining representativeness across 
different data classes. However, rare outcomes, such as 
in-hospital mortality, represented a small subset of the 
already limited primary outcomes. Their low frequency 
in the dataset may have hindered the model’s ability to 
effectively learn patterns associated with these cases. 
Fourth, the outcomes used in this study may not fully 
capture all dimensions of triage system effectiveness. For 
example, our study focused on immediate clinical out-
comes such as hospitalization and ICU admission, but 
did not account for other critical measures like patient 
prognosis (e.g., survival rates, length of hospital stay), 
ED waiting times, or resource utilization efficiency. Last, 
we included only two neighboring hospitals, which may 
limit the generalizability of our models. Including a wider 
range of hospitals from different regions and varying lev-
els of care would be essential for a more comprehensive 
evaluation of the models’ generalizability and perfor-
mance across diverse settings.

Future works
We will further expand the study to include more hos-
pitals at different levels. By incorporating data from a 
broader range of hospitals, we can avoid training on a 
single data source, thereby enhancing the model’s gen-
eralizability. This would enable more precise and reliable 
integration into diverse clinical environments.

Additionally, to assess the model’s impact on actual 
clinical outcomes, such as patient length of stay and over-
all mortality, we suggest that real-world implementation 
into the existing triage system would be necessary. This 
integration could reduce judgment errors and improve 
efficiency, enabling more detailed and precise triage. 
However, future challenges include cross-departmental 
collaboration to integrate the system with existing hospi-
tal workflows, ensuring seamless data transfer for timely 
and accurate real-time decision support. Additionally, 
variability in decision-making criteria across differ-
ent hospitals may reduce the system’s effectiveness, as it 
might not align with each institution’s unique guidelines. 
Lastly, gaining the trust of clinical staff is also essential, 
as healthcare professionals may be hesitant to rely on AI-
based predictions that differ from their clinical judgment.

Conclusion
This study developed and validated machine learning 
models, using both internal and external data, integrat-
ing structured and unstructured triage information to 
predict patient dispositions, specifically distinguishing 
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between general ward admissions and critical conditions, 
including ICU admissions and ED deaths. The integration 
of both structured and unstructured data significantly 
enhanced model performance, aligning with the com-
plexity of real-world clinical decision-making.

Overall, AI-assisted triage systems show great potential 
for improving efficiency, patient safety, and resource allo-
cation in emergency departments, with the possibility for 
broader application across diverse healthcare settings.
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