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Abstract
Background Traumatic injuries are a leading cause of morbidity and mortality globally, with a disproportionate 
impact on populations in low- and middle-income countries (LMICs). The Kampala Trauma Score (KTS) is frequently 
used for triage in these settings, though its predictive accuracy remains under debate. This study evaluates the 
effectiveness of machine learning (ML) models in predicting triage decisions and compares their performance to the 
KTS.

Methods Data from 4,109 trauma patients at Soroti Regional Referral Hospital, a rural hospital in Uganda, were 
used to train and evaluate four ML models: Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), 
and Support Vector Machine (SVM). The models were assessed in regard to accuracy, precision, recall, F1-score, and 
AUC-ROC (Area Under the Curve of the Receiver Operating Characteristic curve). Additionally, a multinomial logistic 
regression model using the KTS was developed as a benchmark for the ML models.

Results All four ML models outperformed the KTS model, with the RF and GB both achieving AUC-ROC values of 
0.91, compared to 0.62 (95% CI: 0.61–0.63) for the KTS (p < 0.01). The RF model demonstrated the highest accuracy 
at 0.69 (95% CI: 0.68–0.70), while the KTS-based model showed an accuracy of 0.54 (95% CI: 0.52–0.55). Sex, hours to 
hospital, and age were identified as the most significant predictors in both ML models.

Conclusion ML models demonstrated superior predictive capabilities over the KTS in predicting triage decisions, 
even when utilising a limited set of injury information about the patients. These findings suggest a promising 
opportunity to advance trauma care in LMICs by integrating ML into triage decision-making. By leveraging basic 
demographic and clinical data, these models could provide a foundation for improved resource allocation and patient 
outcomes, addressing the unique challenges of resource-limited settings. However, further validation is essential to 
ensure their reliability and integration into clinical practice.
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Introduction
Injuries caused by trauma pose a major global health 
issue, significantly contributing to g both morbidity and 
mortality worldwide. Annually, approximately four and 
a half million deaths are attributed to traumatic inju-
ries, accounting for nearly 8% of global mortality [1]. The 
burden of these injuries is disproportionately borne by 
low- and middle-income countries (LMICs), where 90% 
of all injury-related fatalities occur. This glaring inequal-
ity underscores the urgent need for effective trauma care 
interventions in these regions [2].

The rapid urbanisation and infrastructural develop-
ment in LMICs are expected to compound the preva-
lence of traumatic injuries in the coming decades [3]. 
Despite the growing scale of this issue, trauma care in 
these countries faces significant challenges, including 
inadequate resources and a shortage of trained medi-
cal personnel. Effective management of trauma patients 
requires prompt diagnosis of injuries and prioritisation of 
resources for those in critical need, a process known as 
triage. Thus, there’s a pressing need for models and scor-
ing systems that can rapidly perform initial triage assess-
ments of critically ill patients with only minimal injury 
data input [4].

The Kampala Trauma Score (KTS) is widely used for 
predicting mortality and admission in LMICs. It was 
originally developed for assessing traumatic injuries in 
resource-limited settings without advanced diagnostics 
[5], and has been proposed as a potential triage tool in 
LMICs [6–8]. The KTS is typically applied in pre-hospital 
settings and emergency rooms, often by clinicians and 
nurses and to quickly assess the severity of injuries and 
make immediate triage decisions. This score is advanta-
geous for triage because it requires less information com-
pared to other scores and is applicable to patients of all 
ages [9]. This score is calculated using the respiratory 
rate, neurological status, systolic blood pressure, patient’s 
age, and number of serious injuries [5]. However, despite 
its practical advantages, research findings on its effective-
ness have been varied. Some studies advocate its use as a 
reliable triage tool [9], while others have found it lacking 
in predictive strength [7].

In contrast, high-income countries commonly use 
advanced triage systems such as the Emergency Severity 
Index (ESI) to manage increasing patient loads and pri-
oritise care for critically ill patients [10–12]. Some such 
tools have integrated machine learning (ML) models to 
enhance triage accuracy by predicting triage decisions 
such as hospitalisation and critical care, with studies 
suggesting superiority compared to traditional meth-
ods [13, 14]. Despite the well-documented potential of 
ML in predicting outcomes in various medical fields 
[15–17], its application in enhancing triage in LMICs, 
remains limited. Some studies have promising results, 

however the tools are limited to mortality or specific 
fields such as neurosurgery [18–20]. Furthermore, there 
is evidence that one size does not fit all, as models devel-
oped for high-income countries often perform poorly 
in LMIC settings due to different patient demographics 
and resource constraints [21]. This makes a compelling 
argument to develop ML trauma triage tools bespoke to 
LMIC settings.

This study aims to develop an ML-based triage sys-
tem using data from a trauma registry in rural Uganda. 
In addition, we benchmarked the performance of these 
models against the KTS score. Our ML models are 
intended as a foundational tool to support more accurate 
and timely clinical decision-making. While further vali-
dation is required, these models hold promise for inform-
ing resource allocation, guiding patient management, 
and potentially improving outcomes in resource-limited 
settings.

Methods
Data description
A total of 4,109 patient records were obtained from 
a prospective trauma registry established at Soroti 
Regional Referral Hospital, Uganda, which serves a pre-
dominantly rural population. The registry was designed 
to capture information on trauma cases from October 
2016 to July 2019, as described by Zheng et al. in their 
study (S1 Data) [22]. The registry form collected data 
on patient demographics, injury details, clinical assess-
ments, and outcomes (S1 Appendix). The KTS [5], a well 
known effective score for LMICs was used to categorise 
injury severity, with KTS 14–16 signifying a mild injury, 
11–13 a moderate injury, 10 or below a severe injury 
[6]. Trained clinicians and research assistants gathered 
data at initial patient encounters and followed up with 
patients until discharge or transfer.

Data preprocessing
Four relevant features from the dataset were selected to 
develop the ML models: age, sex, hours to hospital and 
mechanism of injury. The choice of features was driven 
by the need for algorithms in LMICs that require mini-
mal data collection and simplicity [4], therefore basic 
demographics features and injury history were chosen 
as these should be rapid to ascertain on initial patient 
presentation, and this data is often be collected by hos-
pitals as a standard matter of administration on arrival/
admission. The raw data were inspected for missing val-
ues and inconsistencies, then free text values were con-
verted to appropriate categorical data. The “sex” variable 
was converted to categorical data with labels “Male” and 
“Female”. The “initial decision” (triage outcome) variable 
was mapped to numerical categories: 1 for “Treat and 
send home”, 2 for “Take to theatre”, 3 for “N/A(died)” 
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and 4 for “Admit to hospital ward”. Any patient data sets 
in which the “initial decision” value was “Send to” or 
“Unknown” were filtered out. The mechanism of injury 
was categorised into types such as blunt force, burn, fall, 
gunshot, and others, as indicated on the original form, 
and then encoded using ‘one-hot encoding’. Our choice to 
use triage outcomes rather than mortality as the primary 
outcome was driven by data distribution constraints. 
Specifically, the ‘death’ variable was highly imbalanced, 
with only 63 cases labelled as ‘1’ (died) compared to 
3946 labelled as ‘0’ (survived). This severe imbalance 
would limit the reliability and predictive performance of 
machine learning models aimed at mortality prediction, 
as the model would be biased toward the majority class, 
potentially leading to high false-negative rates.

Development of machine learning models
Four ML models were trained and evaluated including 
Logistic Regression (LR), Random Forest (RF) Classi-
fier, Gradient Boosting (GB) Classifier and Support Vec-
tor Machines (SVM). The dataset was split into training 
(70%) and testing (30%) sets. A pipeline was created 
for each model in order to transform the raw data into 
trained and deployable ML models, incorporating the 
preprocessing steps and the classifier. Each pipeline was 
trained on the training set and evaluated on the testing 
set.

A hyperparameter tuning process was conducted to 
determine the best parameters for each model. For the 
LR, a regularization parameter of 10 was selected. The 
SVM model was configured with a regularisation param-
eter of 100.0, an ‘rbf ’ kernel, degree of 2, and gamma set 
to ‘scale’. The RF model was tuned with bootstrap set to 
True, a maximum depth of 10, a minimum of 1 sample 
per leaf, a minimum of 2 samples per split, and 500 esti-
mators. For the GB model, the hyperparameters included 
a maximum depth of 3, a minimum of 2 samples per leaf, 
a minimum of 10 samples per split, 50 estimators, and a 
learning rate of 0.1.

The performance of each model was evaluated using 
accuracy, precision, recall, f1-Score and area under the 
receiver operating characteristic curve (AUC-ROC). The 
AUC-ROC provides a measure of the overall ability of the 
model to distinguish between classes, with values closer 
to 1 indicating better performance. It relates to the tra-
ditional sensitivity and specificity metrics by reflecting 
the trade-off between true positive rates and false posi-
tive rates across different threshold settings. ROC curves 
were plotted for each model to visualise their perfor-
mance. To provide insights into the most influential fac-
tors in the prediction process, feature importances for 
the best performing model were calculated. To ensure 
reliability of model performance, a stratified 5-fold cross-
validation was performed and accuracy scores were 

calculated for each fold and iteration, and the mean and 
95% confidence interval of the cross-validation accuracy 
were computed.

Statistical analysis
We analysed the relationship between the KTS and the 
initial clinical decision to examine if KTS significantly 
influences clinical decisions. We performed a chi-squared 
test to assess the association between KTS categories and 
initial decision categories.

We then built a multinomial logistic regression model 
using KTS to predict the initial clinical decision. The 
model is represented by:

 
P (yi = j) = eβ 0j+β 1j · kts

∑ J
k=0eβ 0k+β 1k· kts

where β 0j is the intercept for outcome j and β 1j  is the 
coefficient for the predictor KTS.

A stratified 5-fold cross-validation was performed. 
Accuracy scores were calculated for each fold during 
each iteration, and the mean and 95% confidence inter-
val of the cross-validation accuracy were subsequently 
computed. This model was used to benchmark our ML 
models. To compare our ML models with the KTS-based 
model, we calculated performance metrics for the KTS-
based model and ran paired t-tests to statistically com-
pare it with the best-performing ML model.

The descriptive statistics for the patient demographics, 
injury details, and outcomes were done in R v4.2.1 using 
ggplot2 v3.5.0 [23], readxl v1.4.3 [24], dplyr v1.1.4 [25], 
tidyr v1.3.1 [26], ggsci v3.2.0 [27] and kableExtra v1.4.0 
[28]. The data manipulation, ML model development, 
statistical modelling, and scientific computing were per-
formed using Pandas v2.1.3 [29], Scikit-learn v1.3.2 [30], 
Statsmodels v0.14.0 [31] and Scipy v1.11.3 [32] respec-
tively, in Python v3.9. We followed the TRIPOD + AI 
guidance on transparent reporting of clinical prediction 
models that use ML, and the checklist has been provided 
as part of supplementary material (S1 Checklist) [33].

Results
Sex and age distribution
The dataset comprised a total of 4,109 patients. The 
majority of the patients were male (62%), followed by 
females (37%), and a small proportion (1%) had missing 
values for sex. The most represented age groups repre-
sented in the dataset were 0–9 years (25%), 20–29 years 
(20%), and 10–19 years (18%) were the most (Table 1).

Mechanism of injury by age group
Road traffic accidents were the predominant cause of 
injury across most age groups. For example, in the age 
group 20–29 years, road traffic accidents accounted for 
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50% of the injuries. Falls and blunt forces were also sig-
nificant contributors, with falls representing 59% in the 
50–59 years age group and blunt forces accounting for 
26% in the 30–39 years age group. This distribution high-
lights the variation in injury mechanisms based on age 
(Fig. 1).

Mechanism of injury by sex and initial decision
Males were more frequently involved in road traffic acci-
dents (38%), which often required theatre intervention 
(69%). Females showed a relatively higher proportion of 

fall injuries (40%) and road traffic accidents (30%), with 
most falls leading to treatment and being sent home 
(51%) and deaths from the road traffic accidents (64%) 
(Fig.  2). The majority of trauma patients requiring sur-
gery were male.

KTS and admission decision
The relationship between the KTS and the initial clini-
cal decision was analysed using a chi-squared test. The 
results indicated a highly significant relationship between 
the KTS and the initial clinical decision (χ² = 243.66, 

Table 1 Sex and age distribution of patients
Characteristic Category Count Percentage (%)
Demographics Sex

Male 2560 62.30
Female 1528 37.19
NA 21 0.51
Total 4109 100
Age Group
0–9 1028 25.02
10–19 734 17.86
20–29 824 20.05
30–39 573 13.94
40–49 327 7.96
50–59 216 5.26
60–69 158 3.85
70–79 122 2.97
80–89 74 1.80
90–99 14 0.34
100–109 2 0.05
NA 37 0.90
Total 4109 100

Initial Decision Treat and send home 1673 40.72
Take to theatre 1501 36.53
N/A (Died) 803 19.54
Admit to hospital ward 32 0.78
NA 100 2.43
Total 4109 100

Mechanism of Injury Animal Bite 114 2.77
Blunt Force 698 16.99
Burn 116 2.82
Fall 1463 35.61
Gunshot 11 0.27
Other 73 1.78
Poisoning 36 0.88
Road Traffic Accident 1432 34.85
Stab/Cut 156 3.80
NA 10 0.24
Total 4109 100

Hours to Hospital Less than 1 h 778 18.93
1 to 6 h 1103 26.84
Over 6 h 1973 48.02
NA 255 6.21
Total 4109 100
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Fig. 2 Mechanism of injury by sex and initial decision

 

Fig. 1 Injury mechanisms by age group
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p < 0.001), suggesting that KTS is a relevant factor in 
determining the initial management of trauma patients. 
Subsequently, a KTS-based Multinomial Logistic Regres-
sion model was fitted to predict the initial clinical deci-
sion (Fig.  3). The model yielded an AUC-ROC of 0.62 
(95% CI 0.61–0.63), indicating moderate discriminative 
ability.

To investigate the role of predictor variables in triage 
decision-making, we analysed distributions of age, trans-
port time to hospital, sex, injury mechanism, and KTS 
score across triage outcomes (Supplementary Tables 
S1–S5). Patients admitted or requiring surgery tended to 
be older on average, while younger patients were more 
likely to be treated and discharged (p < 0.001). Prolonged 
prehospital transport times correlated significantly 
with more severe outcomes (p < 0.001), underscoring 
the impact of delayed care. Sex distribution also varied 
markedly by triage outcome (p < 0.001), with males over-
represented in critical cases. Injury mechanisms showed 
distinct patterns, with road traffic accidents significantly 

represented in severe cases (p < 0.001), suggesting its 
potential as a high-risk indicator. KTS scores aligned pre-
dictably, with lower scores associated with more inten-
sive interventions (p < 0.001).

Machine learning model performance
We evaluated four ML models: LR, RF, GB, and SVM 
(Table 2). Additionally, we compared them with the KTS 
model. The highest performing ML model (RF) signifi-
cantly outperformed the KTS-based model in predict-
ing the initial clinical decision (p = 0.005). The RF and GB 
classifiers demonstrated the highest AUC-ROC values of 
0.91, indicating excellent model performance in distin-
guishing between different classes. The SVM classifier 
also showed high AUC-ROC (0.90), closely followed by 
LR (0.89). The KTS-based model exhibited a significantly 
lower AUC-ROC of 0.62, reflecting its relatively poorer 
performance. The RF model achieved the highest accu-
racy of 0.69, with a 95% confidence interval (CI) of 0.68 
to 0.70, indicating a reliable performance. GB and SVM 

Table 2 Performance metrics for various classifiers including LR, RF, GB, SVM, and the KTS model. Note: CV stands for cross-validation
Classifier Accuracy Precision Recall F1-Score AUC-ROC CV Mean Accuracy (95% CI) CV Mean AUC-ROC (95% CI)
LR 0.63 0.63 0.63 0.63 0.89 0.63(0.62, 0.63) 0.79(0.79,0.80)
RF 0.69 0.69 0.69 0.68 0.91 0.68(0.67,0.68) 0.82(0.82,0.82)
GB 0.68 0.68 0.68 0.68 0.91 0.67(0.67,0.68) 0.83(0.83,0.83)
SVM 0.69 0.69 0.69 0.68 0.90 0.67(0.67,0.67) 0.80(0.80,0.80)
KTS 0.54 0.42 0.54 0.45 0.62 0.54(0.52,0.55) 0.61(0.61,0.63)

Fig. 3 ROC curve for the KTS-based multinomial logistic regression model
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followed closely with accuracies of 0.68 and 0.69, respec-
tively. The KTS-based model had the lowest accuracy at 
0.54 (95% CI: 0.52–0.55). The mean accuracy from cross-
validation (CV) for the ML models ranged from 0.63 
to 0.68, with RF and GB showing the highest mean CV 
accuracies.

The RF and GB models exhibited similar and superior 
performance with AUC values of 0.91. The SVM and 
LR models followed closely behind with AUC values of 
0.90 and 0.89, respectively. The KTS model had the low-
est AUC of 0.62, demonstrating its lower discriminative 
capability compared to the ML models. The ROC curves 
reaffirm the superior performance of the ML models 
over the KTS-based model in predicting the initial clini-
cal decisions, as evidenced by their higher AUC values 
(Fig. 4).

Feature importance analysis
The feature importance for the highest-performing mod-
els, GB and RF, was analysed to provide insights into the 
most influential factors in the prediction process. The 
figure below presents the feature importance for these 
models (Fig. 5).

The GB model identified ‘sex’, ‘hours to hospital,’ and 
‘age’ as the most important features. The mechanisms 
of injury such as ‘burn,’ ‘fall,’ and ‘road traffic accident’ 
also played significant roles in the prediction process. 

Similarly, the RF model highlighted ‘sex’, ‘hours to hospi-
tal,’ and ‘age’ as the key features. The model also found 
that the mechanisms of injury including ‘fall,’ ‘poisoning,’ 
and ‘burn’ were important for predicting the initial clini-
cal decision.

Discussion
This study aimed to develop and evaluate an ML-based 
triage tool using data from a trauma registry in rural 
Uganda, benchmarking its performance against an estab-
lished tool in such settings, the KTS. Our findings indi-
cate that ML models demonstrate superior performance 
compared to the KTS in predicting triage decisions. The 
predictive performance of the developed ML models is 
similar to those observed in other ML-based studies in 
high income countries [10, 34, 35].

The KTS score, developed for resource-limited settings, 
has been proposed as a practical triage tool due to its 
simplicity and applicability across all age groups [5, 36]. 
Despite being highly correlated with admission outcomes 
(p < 0.01), the KTS-based model achieved an AUC-ROC 
value of 0.61 (95% CI 0.61–0.63) in predicting the triage 
decision. The low discriminative ability of the KTS in the 
current study is consistent with findings from a study 
that applied KTS to a cohort of 15,617 patients in Malawi 
(AUC-ROC 0.62), to predict admission [7]. This study 
found that KTS was not a strong predictor of prolonged 

Fig. 4 Illustration of the ROC curves for the evaluated models, showing the trade-off between sensitivity (True Positive Rate) and specificity (False Posi-
tive Rate)
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hospital stays, highlighting its limitations as a standalone 
triage tool.

In comparison, however, ML models, particularly 
ensemble models (RF and GB classifiers), were found to 
perform superiorly in predicting triage decision. During 
model development we prioritised model interpretability 
and practicality by using fewer variables (sex, age, hours 
between the accident and admission and the mechanism 
of injury), ensuring that the models remain easy to imple-
ment in clinical settings. Collecting extensive data, such 
as respiratory rate, neurological status, systolic blood 

pressure, and laboratory results, can be challenging and 
costly in LMICs. Therefore, we aimed to build a model 
that could effectively triage patients upon arrival with 
minimal but essential information. Variables like type of 
injury, hours to hospital, age, and sex are straightforward 
to collect and provide a solid foundation for accurate 
triage.

Our findings are consistent with those of a study con-
ducted by De Hond et al. in the Netherlands, which 
compared ML models for predicting hospital admis-
sions at different time points (triage, 30 min, and 2 h after 

Fig. 5 Illustration of the most important features for the GB and RF models
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ED registration) [14]. Similar to our results, their study 
found that ML models, particularly GB, performed well 
across all time points without significant performance 
improvement when additional information, such as labo-
ratory results, was included. This reinforces the potential 
of ML models to deliver reliable predictions even with 
limited data. However, to our knowledge, no previous 
studies have developed ML models to guide triage deci-
sion making at trauma wards in sub-Saharan Africa and 
other LMIC settings. Possible bottlenecks to this devel-
opment could be the shortage of locally relevant datasets 
for model development, therefore the establishment of 
trauma registries such as that at Soroti Regional Referral 
Hospital are essential.

The feature importance analysis revealed that sex, 
hours to hospital, and age were the most significant pre-
dictors of trauma outcomes in both the GB and RF mod-
els. This aligns with clinical expectations and underscores 
the critical role of these variables in determining patient 
prognosis. Notably, the inclusion of ‘hours to hospital’ as 
a predictor highlights the impact of delays in receiving 
medical care. Prolonged prehospital time is well known 
to be associated with worse clinical outcomes [37], a 
reality often exacerbated by infrastructural and resource 
challenges in LMICs. Current scores like KTS do not 
account for prehospital time, which is a crucial factor 
in trauma care, especially in resource-limited settings 
[38–40].

In line with previous literature, age was found to be an 
important factor in triaging trauma patients. Advanced 
age is associated with worse outcomes following injury, 
owing to decline in physiological response to injury, 
reduced physiological reserve, and more numerous 
comorbidities [41]. Therefore, the inclusion of age in tri-
aging tools has been previously emphasised, and its rel-
evance is reflected by its importance in the current study. 
Our findings showed that sex, was a significant predictor 
to the predictive performance of the models. This find-
ing aligns with the broader literature, which consistently 
shows a higher incidence of trauma among males, espe-
cially in LMICs [22, 42, 43]. The overrepresentation of 
males in trauma cases is often attributed to their involve-
ment in high-risk occupations and activities, which carry 
greater exposure to injury [22]. These patterns under-
score the importance of including sex in triage models, as 
it enhances the prediction of outcomes.

The improved predictive performance of ML mod-
els compared to KTS in our study suggests the poten-
tial value of incorporating data-driven approaches into 
trauma triage decision-making in LMICs. However, as 
these findings are based on retrospective data from a sin-
gle centre, further validation across multiple settings and 
prospective evaluation of clinical impact will be essential 
before recommending any systematic changes to existing 

triage protocols. By leveraging basic demographic and 
clinical information, ML models have potential to pro-
vide timely and accurate triage decisions, reducing triage 
waiting times, optimising resource allocation, reduc-
ing costs, and improving patient outcomes [13, 44, 45]. 
This is particularly crucial in settings where advanced 
diagnostic tools are scarce, and rapid decision-making 
is essential. Integrating ML models into clinical practice 
could enhance decision-making processes, support clini-
cians with real-time predictions, reduce the burden on 
overworked medical personnel, and ultimately improve 
patient outcomes.

Limitations
While our study highlights the potential of ML models 
in trauma triage, it is essential to acknowledge its limi-
tations. First, the performance of ML models is highly 
dependent on the quality and completeness of the data 
used for training the models. In the current study, data 
had some degree of incompleteness, posing a signifi-
cant challenge in model development. Second, the study 
focused on a limited set of predictors that were readily 
available in the datasets. While this approach was inten-
tional to enhance the model’s practicality and applica-
bility in resource-limited settings, it may have excluded 
other potentially important variables that could improve 
the model’s predictive performance.

Third, fairness methods were not specifically applied 
in this preliminary model, which focused on establishing 
a foundational approach. We recognise potential biases 
in the data, such as the higher incidence of fall injuries 
among female patients, which may reflect variations in 
injury reporting or severity. Future work should include 
fairness assessments, examining model performance 
across demographic subgroups to ensure equitable and 
unbiased triage recommendations. Lastly, while ML 
models offer promising improvements over traditional 
scoring systems like KTS, the interpretability of these 
models remains a challenge. In clinical practice, the abil-
ity to understand and trust model predictions is essential 
for adoption. Efforts to enhance model transparency and 
provide clear explanations of predictions will be neces-
sary to facilitate integration into clinical workflows.

Conclusion
The findings from our study, together with insights from 
existing research, highlight the potential of ML mod-
els to enhance trauma care in LMICs. The next step 
involves advancing these models into accessible plat-
forms for real-time clinical use as complementary tools 
alongside existing triage systems, potentially through 
simplified scoring systems via mobile applications. 
While preliminary results are promising, further work 
is needed to address data quality issues, improve model 
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interpretability, and ensure clinical acceptability. Critical 
to this advancement is the development of robust trauma 
registries across sub-Saharan Africa, which will enable 
not only ML model development but also systematic 
improvements in clinical care, surveillance and quality 
assurance. By providing timely and accurate predictions, 
these models could significantly improve triage efficiency 
and resource allocation, with the ultimate goal of improv-
ing patient outcomes. With careful development and 
rigorous validation, ML models could form a valuable 
foundation for advancing trauma care in resource-limited 
environments.
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