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Abstract
Background Critically ill patients can deteriorate rapidly; therefore, prompt prehospital interventions and seamless 
transition to in-hospital care upon arrival are crucial for improving survival. In Japan, helicopter emergency medical 
services (HEMS) complement general emergency medical services (GEMS) by providing on-site care, reducing 
transport times, and aiding facility selection. Vital signs at hospital arrival determine initial management, but existing 
models are poor at predicting them, especially in patients receiving continuous interventions from both GEMS and 
HEMS. Therefore, we developed a machine-learning model to accurately predict the actual values of vital signs at 
hospital arrival using limited patient characteristic data and prehospital vital signs.

Methods Using data from the Japanese Society for Aeromedical Services registry, we retrospectively analyzed data 
from patients aged ≥18 years transported by HEMS between April 2020 and March 2022. Patients with cardiac arrest 
during transport, missing vital signs, and data inconsistencies were excluded. The predictive model used prehospital 
vital signs from GEMS and HEMS contact times, demographic characteristics, and intervention information. The 
primary outcome was the actual values of vital signs measured at hospital arrival. After data preprocessing, we 
constructed a deep neural network multi-output regression model using Bayesian optimization. Model performance 
was assessed by comparing the predicted values with the actual hospital arrival measurements using mean absolute 
error, R² score, residual standard deviation, and Spearman’s correlation coefficient. Additionally, the NN model’s 
performance was compared with alternative methods, namely HEMS contact values and change-based predictions 
derived solely from prehospital data.

Results The study included 10,478 patients (median age 70 years; 69% male). The model achieved mean absolute 
errors of 7.1 bpm for heart rate, 15.7 mmHg for systolic blood pressure, 10.8 mmHg for diastolic blood pressure, 
2.9 breaths/min for respiratory rate, and 0.62 points for Glasgow Coma Scale score. The Spearman’s correlation 
coefficients ranged from 0.54 to 0.86. The model outperformed other methods, especially for R² scores and residual 
standard deviations, demonstrating its superior ability to predict actual vital signs values.

Improving prediction accuracy of hospital 
arrival vital signs using a multi-output 
machine learning model: a retrospective study 
of JSAS-registry data
Yasuyuki Kawai1*, Koji Yamamoto1, Keisuke Tsuruta1, Keita Miyazaki1, Hideki Asai1 and Hidetada Fukushima1

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12873-025-01233-9&domain=pdf&date_stamp=2025-5-12


Page 2 of 9Kawai et al. BMC Emergency Medicine           (2025) 25:78 

Background
Critically ill patients can deteriorate rapidly, necessitating 
prompt prehospital interventions and a seamless transi-
tion to in-hospital care for optimal outcomes [1–4]. In 
Japan, following the initial response by general emer-
gency medical services (GEMS), helicopter emergency 
medical services (HEMS) have been implemented to pro-
vide continuous care by delivering on-site interventions, 
reducing transport times, and facilitating the rapid initia-
tion of hospital treatment [5–9].

Predicting the condition at hospital arrival from pre-
hospital data is crucial because it enables hospital teams 
to prepare treatment for severe cases ahead of patient 
arrival, thereby reducing delays in initiating critical care 
[10, 11]. Moreover, assessing individual vital signs pro-
vides granular clinical insight that may be obscured when 
using composite scores, allowing for the early detection 
of specific physiological changes [12]. Existing predic-
tive models for predicting patient condition upon arrival 
have limited accuracy [13]. Although several models have 
been developed for either GEMS or HEMS, none has 
integrated interventions from both services to predict 
vital sign changes [14–16]. This is a notable gap given 
that nearly all patients in Japan receive sequential inter-
ventions from GEMS followed by HEMS.

Additionally, the frequent unavailability of prehospital 
patient characteristic data can lead to inefficient resource 
allocation and treatment delays [17]. AI-based models 
offer a promising solution by capturing complex, non-lin-
ear relationships within available data, thereby enhancing 
prediction accuracy and facilitating earlier, more targeted 
and individualized clinical interventions [18, 19].

While no single indicator fully captures a patient’s con-
dition, vital signs remain important assessment param-
eters in the clinical setting [13, 20]. Vital signs include 
multiple interconnected items [21]; therefore, integrated 
predictions may improve prediction accuracy compared 
with single-item predictions. The present study con-
structed a machine learning model that integrates limited 
patient background information and prehospital vital 
signs to accurately predict vital signs upon patient arrival 
at a medical institution.

Methods
Study aim, design, and setting
This retrospective, observational study developed a 
machine-learning model that integrates limited patient 
background information with prehospital vital signs to 

accurately predict vital signs upon patient arrival at med-
ical institutions.

Data source
The study utilized data from the Japanese Society for 
Aeromedical Services Registry (JSAS-R), a nationwide 
database established in 2020 with the support from the 
Ministry of Health, Labour and Welfare Science Research 
Grant (Grant Number 202122064A). The JSAS-R pro-
spectively records HEMS activities across Japan, cover-
ing 80.5% of all dispatches during the observation period 
from April 2020 to March 2022. The database is cen-
trally maintained and collects prehospital data, includ-
ing vital signs and activity times at the point of contact 
with GEMS and HEMS before hospital arrival. Interven-
tions performed by GEMS and HEMS are also recorded, 
although specific implementation times and person-
nel are not provided. Patients receiving both GEMS and 
HEMS are transported to medical facilities by HEMS. 
While transport policies may vary between institutions, 
the data collection process is standardized across partici-
pating facilities.

Study population
We included patients aged ≥ 18  years who were trans-
ported by HEMS from the scene to a medical institution 
between April 2020 and March 2022. Patients who expe-
rienced cardiac arrest during transport were excluded 
due to significant differences in GEMS interventions and 
HEMS transport policies for such cases. We excluded 
cases with missing vital sign measurement times, calcu-
lated activity times that were negative or > 480  minutes, 
and those with missing vital signs immediately before 
hospital arrival, which was the focus of this study.

Outcome definition
The primary outcome of this study was defined as the 
actual values of vital signs measured at hospital arrival 
(Heart rate (HR), systolic blood pressure (SBP), diastolic 
blood pressure (DBP), respiratory rate (RR), and Glasgow 
Coma Scale (GCS) score).

Model features
The input features for the model included:

1. Vital signs: HR, SBP, DBP, RR, and GCS score at the 
time of GEMS and HEMS contact, and their changes 
per unit time (Additional Fig. 1).

Conclusion The multi-output regression model accurately predicted the actual values of vital signs measured 
at hospital arrival using limited prehospital information, demonstrating the effectiveness of advanced modeling 
techniques.
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2. Patient characteristics: Age, sex, and etiology 
classification (whether caused by internal factors, 
such as diseases, or external factors, such as trauma).

3. Intervention: The presence or absence of tracheal 
intubation performed by GEMS and HEMS as our 
intervention parameter was due to its early use 
and significant impact. Although other important 
prehospital procedures, such as intravenous fluid 
administration and thoracostomy, are clinically 
relevant, they were not included, due to the lack 
of detailed and consistent timing, dosage, and 
contextual data in the JSAS-R database. Tracheal 
intubation was selected because, if sedation was 
administered at the time of intubation, the GCS is 
typically recorded as unchanged thereafter, while the 
respiratory rate reflects ideal ventilation based on 
assisted ventilation parameters. Therefore, to avoid 
introducing excessive complexity and uncertainty 
in our model, all HEMS interventions were treated 
uniformly, and tracheal intubation was used as a 
representative marker. We constructed our model 
under the assumption that all “HEMS interventions” 
were treated uniformly because the database lacked 
a record of the timing of interventions. In other 
words, the absence of detailed timing information 
meant that including each intervention’s impact 
separately would introduce excessive complexity and 
uncertainty, making results interpretation overly 
difficult.

Data preparation
Recording vital signs in emergency medicine can lead to 
inaccuracies [22–24]. To improve the reliability of the 
data, we performed the following preprocessing steps.

1. Detection and handling of outliers

We calculated the interquartile range (IQR) for each vital 
sign and defined outliers as data points below the first 
quartile minus 1.5 times the IQR or above the third quar-
tile plus 1.5 times the IQR. Outliers were treated as miss-
ing values, and missing data processing was performed. 
However, cases with missing data on target vital signs 
immediately before hospital arrival were excluded.

2. Handling missing values after excluding outliers

For missing data, we used masking techniques and miss-
ing indicators to generate new features indicating the 
presence or absence of the missing values. We imputed 
the missing values using the iterative imputer method, 
which iteratively estimates missing values by leveraging 
correlations with other variables, thereby enabling accu-
rate imputation.

3. Data standardization

To improve model convergence and computational effi-
ciency, we standardized all continuous variables to have a 
mean of 0 and a standard deviation of 1. The data distri-
butions before and after outlier processing and missing-
value imputation are shown in Additional Fig. 2.

Feature preprocessing
We divided the entire dataset into external five-fold 
cross-validation splits to evaluate the generalization 
performance of the model. Within each external fold, 
we performed hyperparameter tuning using internal 
five-fold cross-validation. This nested cross-validation 
approach prevented overfitting and allowed for a more 
reliable performance evaluation. Figure 1 shows an over-
view of this process.

Model construction
As multiple vital signs are interrelated, we constructed a 
multi-output regression model using a deep neural net-
work (DNN) to capture these interactions. The details of 
the model are as follows:

1. Input layer: Preprocessed features were input.
2. Hidden layers: We introduced multiple residual 

blocks to increase the network depth while 
mitigating the vanishing gradient problem. Batch 
normalization and dropout were applied to improve 
the training stability and generalization performance.

3. Output layer: Output nodes corresponding to each 
target vital sign.

4. Hyperparameter tuning: We performed 
Bayesian optimization using Optuna to optimize 
hyperparameters, such as the optimizer type, 
learning rate, number of units in each layer, dropout 
rate, number of residual blocks, and loss function 
weights. By weighting the loss function, we adjusted 
the impact of the prediction errors for each vital sign. 
The search ranges are listed in Additional Table 1.

5. Model training and evaluation: The training was 
halted when the performance of the validation data 
stopped improving. We introduced a learning rate 
scheduler to decay the learning rate as the training 
progressed.

The evaluation metrics included the mean absolute error 
(MAE), mean squared error (MSE), R² score, Spearman’s 
correlation coefficient, and standard deviation of residu-
als to evaluate the variance of the prediction errors. The 
purpose of each evaluation metric is detailed in Addi-
tional File 1.
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Comparison of prediction models
To evaluate prediction accuracy and reliability, we com-
pared the machine learning-based multi-output regres-
sion model with the following two alternatives:

1. HEMS contact values: Reflecting the state at the 
start of the medical interventions.

2. Change-based prediction: Linear prediction 
using the rate of change per unit time of vital signs 
between the GEMS and HEMS interventions. 
Calculated as follows:

 

V Spred =V SHEMS +
(

V SHEMS − V SGEMS

∆tGEMS−HEMS

)

× ∆tHEMS−Hospital

VSpred: Predicted vital signs upon hospital arrival
VSHEMS: Vital signs at HEMS contact
VSGEMS: Vital signs at GEMS contact
ΔtGEMS-HEMS: Time interval from GEMS contact to 

HEMS contact (minutes)
ΔtHEMS-Hospital: Time interval from HEMS contact to 

hospital arrival (minutes)
This change-based prediction equation was derived 

from our previous study [25], which focused on the 
rate of change in vital signs during the GEMS phase. 
Our analysis revealed that the changes observed during 
GEMS interventions alone did not fully account for the 
additional impact of HEMS interventions. Therefore, this 
linear model, which relies exclusively on prehospital data, 

serves as a conventional benchmark for the NN model’s 
performance evaluation.

However, please note the following points: In the main 
analysis, the NN model was trained on the full dataset 
using imputation to handle missing prehospital data, 
along with the actual vital sign measurements at hos-
pital arrival. In contrast, the HEMS contact values and 
change-based predictions rely solely on the available 
prehospital information. Thus, these reference methods 
serve as conventional benchmarks rather than direct 
competitors.

Statistical analysis
Continuous variables with many outliers are expressed 
as medians (interquartile ranges), while categorical vari-
ables are presented as counts and percentages.

To evaluate the prediction accuracy of the models, we 
compared the predicted vital sign values with the actual 
values measured at hospital arrival using scatter plots for 
visual assessment and calculated the MAE, Spearman’s 
correlation coefficient, R² score, and standard devia-
tion of the residuals as quantitative metrics (Additional 
Fig. 3).

Sensitivity analysis
We conducted a sensitivity analysis on the data with 
missing values by building a model using only cases with 
no missing values.

To ensure reproducibility, we set random seeds to 
maintain consistency in the results.

Fig. 1 Model architecture. NNPM: neural network-based prediction model; HCV: helicopter contact-based prediction values; CRPM: change rate-based 
prediction model; MAE: mean absolute error; Spearman's rank correlation coefficient

 



Page 5 of 9Kawai et al. BMC Emergency Medicine           (2025) 25:78 

Programming environment
Data analysis and machine learning were performed 
using Google Colaboratory with Python 3.10.12, scikit-
learn 1.3.2, TensorFlow 2.17.0, and Optuna 4.0.0.

Results
Among 25,815 initial patients, 10,478 were included after 
applying the exclusion criteria. Of the excluded patients, 
60% were excluded because of missing prehospital arrival 
vital signs (Fig. 2).

The patient demographics are shown in Table  1. The 
median patient age was 70 years, and 69% of the patients 
were male. Trauma was the most common etiology 
(41%). Missing vital signs were particularly prevalent at 
the time of GEMS contact, with 36% and 20% missing 
GCS scores and RR measurements, respectively. At the 
time of HEMS contact, missing data were less frequent, 
but the RR still had a missing rate of 8%.

Prediction accuracy of the multi-output regression model
The MAEs for predicting each vital sign in the multi-out-
put regression model were as follows: HR 7.1 bpm, SBP 
15.7 mmHg, DBP 10.8 mmHg, RR 2.9 breaths/min, and 
GCS score 0.62 points. The Spearman’s correlation coef-
ficients between the true values and the predicted val-
ues were high for HR (0.83) and the GCS (0.86) and low 
for SBP (0.68), DBP (0.55), and RR (0.54). These MAEs 
and correlation coefficients did not notably differ com-
pared with those from the HEMS contact observations; 
however, the neural network (NN) model showed more 
accurate predictions in terms of R² scores and standard 
deviations of residuals. Specifically, the R² scores for 

the NN model’s predictions were 0.42 for SBP and 0.29 
for DBP, substantially higher than the 0.10 and − 0.18 
obtained using HEMS contact observations (Table 2).

These results indicated high prediction accuracy for HR 
and GCS scores, with the NN model consistently outper-
forming the other methods in terms of R² and variance 
reproduction. Although the RR and BP predictions had 
relatively low correlation coefficients, the clinical predic-
tions were within 10% of the observed values. The scat-
terplots in Fig.  3 visually depict these relationships and 
prediction performances across the different methods.

Sensitivity analysis
The sensitivity analysis, including only 5,112 cases 
without missing values showed slight improvements 
in accuracy and similar trends as the results after data 
imputation (Additional Table 2, Additional Fig. 3).

Discussion
This study developed a multi-output regression model 
that integrates intervention data from both GEMS and 
HEMS to predict patient vital signs upon hospital arrival. 
Our NN model achieved high accuracy, particularly in 
predicting HR and GCS scores with low MAEs. In com-
parison to conventional methods used as benchmarks 
(that is, simple HEMS contact measurements and linear 
change-based predictions relying solely on prehospi-
tal data), the NN model demonstrated superior perfor-
mance, as evidenced by higher R² scores and reduced 
residual variance. These results demonstrate that, even 
with limited prehospital data, a model that accounts for 

Fig. 2 Flowchart of patient selection. JSAS-R, Japanese Society for Aeromedical Service Registry; HEMS, helicopter emergency medical service; CPR, 
cardiopulmonary resuscitation
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interactions among factors can more accurately predict 
the actual vital sign values at hospital arrival.

Vital sign-based models present statistical challenges 
owing to repeated measurements and multicollinear-
ity [26]. The multi-output regression model used in this 
study improved the model’s performance by incorpo-
rating deep learning techniques such as residual blocks 
[27] and batch normalization [28]. The use of residual 
blocks mitigates the vanishing gradient problem asso-
ciated with deep networks, allowing the model to learn 
complex nonlinear relationships. Batch normalization 
and dropout improved training stability and reduced the 
risk of overfitting. In addition, Bayesian optimization 
using Optuna enabled efficient hyperparameter tuning 
to maximize the model’s performance [29]. The optimi-
zation of the loss function weights allowed the model to 
appropriately reflect the importance of each vital sign. 
These modeling techniques and tuning strategies signifi-
cantly contributed to improving the prediction accuracy. 
By considering the effects of continuous interventions 
from the GEMS and HEMS on prediction accuracy, the 
model more accurately reflected the complex realities of 
emergency medicine. This approach demonstrated the 
practical and effective application of predictive models in 
emergency settings.

The lower predictive accuracy of RR and GCS scores 
compared with that for the other vital signs may be 
due, in part, to the fact that these variables were treated 
as continuous values in the regression model despite 
their discrete nature. Although respiratory rate is theo-
retically a continuous variable, in clinical practice, it 
is typically measured by counting breaths over a short 
interval (for example, 10 or 15 seconds) and then extrap-
olating to a per-minute value, resulting in discrete num-
bers (see Additional Fig.  2 for the actual distribution). 

Table 1 Eligible patient characteristics
Variables Overall

n = 10478
Patient demographics
 Age (years), median (IQR) 70 (55, 80)
 Sex (male), n (%) 7266 (69)
Underlying condition, n (%)
 Trauma 4553 (43)
 Cerebrovascular diseases 2144 (20)
 Other internal causes 1632 (16)
 Cardiovascular diseases 990 (9)
 Other external causes 565 (5)
 Unknown 594 (6)
Vital sign (n (%), median (IQR))
 GEMS at contact HR (n = 9515) 82 (70, 97)

SBP (n = 9330) 141 (118, 165)
DBP (n = 8945) 84 (70, 99)
RR (n = 8383) 20 (18, 24)
GCS (n = 6756) 15 (13, 15)

 HEMS at contact HR (n = 10191) 81 (70, 94)
SBP (n = 10027) 141 (120, 163)
DBP (n = 9852) 83 (70, 97)
RR (n = 9647) 20 (18, 24)
GCS (n = 10364) 15 (13, 15)

 HEMS final measurement HR 80 (69, 94)
SBP 139 (120, 158)
DBP 82 (70, 93)
RR 20 (17, 23)
GCS 15 (13, 15)

Duration of intervention
 GEMS (min), median (IQR) 22 (17, 28)
 HEMS (min), median (IQR) 26 (21, 32)
IQR, interquartile range; GEMS, ground emergency medical service; HEMS, 
helicopter emergency medical service; HR, heart rate; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; RR, respiratory rate; GCS, Glasgow coma 
scale

Table 2 Comparison of predicted vital sign values at hospital arrival with actual measurements across different models
Variable HR SBP DBP RR GCS

HEMS contact values MAE 7.3 18.8 13.5 2.9 0.38
R2 0.63 0.1 -0.18 0.1 0.84
SD 11 25.9 18.4 4.3 1.3
Spearman correlation 0.83 0.65 0.52 0.54 0.93

Change-based predicted values MAE 13.9 29.8 22.8 5.9 0.99
R2 -0.68 -1.5 -2.7 -2.7 0.42
SD 23.5 43 32.5 8.7 2.4
Spearman correlation 0.68 0.51 0.37 0.42 0.77

NN predicted values MAE 7.1 15.7 10.8 2.9 0.62
R2 0.69 0.42 0.29 0.32 0.84
SD 10 20.8 14 3.9 1.4
Spearman correlation 0.83 0.68 0.55 0.54 0.86

Table  2 compares three methods for predicting hospital arrival vital signs: (1) HEMS contact values (initial HEMS measurements), (2) change-based predictions 
(extrapolated from GEMS and HEMS data), and (3) NN predictions from our multi-output regression model. Performance metrics (MAE, R², SD of residuals, and 
Spearman's correlation) were calculated by comparing each method’s predictions with the actual hospital arrival values. HR, heart rate; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; RR, respiratory rate; GCS, Glasgow coma scale; MAE, mean absolute error; R2, R-squared; SD, standard deviation; Spearman Correlation, 
Spearman's rank correlation coefficient
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Consequently, the model may have struggled to capture 
their characteristics accurately, leading to decreased 
prediction accuracy. In addition, high missing rates and 
potential measurement errors owing to manual assess-
ments may have also affected the results. Moreover, the 
RR is often measured over 15 s and multiplied by four, 
thus introducing inter-observer variability [30]. Addi-
tionally, the GCS includes subjective evaluation compo-
nents that may lead to inconsistent data collection [31]. 
These issues highlight the need for improved data col-
lection methods and standardization of measurement 
techniques. Future models that account for the discrete 
nature of the RR and GCS scores, along with improved 
data reliability, are expected to improve predictive 
accuracy.

While previous studies have attempted to predict 
vital signs by focusing on single parameters or isolated 
interventions [32, 33], our study extends this work by 
examining the sequential effects of interventions from 
both GEMS and HEMS using a multi-output regression 
model. This approach offers additional insight into the 
complex interplay of factors in emergency care. How-
ever, given the limitations of our data– including a high 
proportion of missing values and the lack of detailed 
prehospital intervention timing– these findings should 

be interpreted with caution. Although our model dem-
onstrated improved prediction accuracy of the dataset, 
further validation is necessary before the results can be 
applied in real-world clinical practice.

This technology has the potential to significantly 
improve the quality of emergency medical care. Spe-
cifically, this model can provide valuable information 
for preparing hospital reception systems and allocating 
appropriate medical resources before patient arrival. By 
accurately predicting a patient’s condition upon arrival, 
medical teams can formulate effective initial responses 
and optimize resource utilization, potentially reducing 
treatment delays and improving patient outcomes [34].

Limitations
This study has some limitations. First, a major limitation 
of this study is the substantial amount of missing pre-
hospital data, which resulted in the exclusion of 12,158 
cases. This exclusion may have introduced selection bias 
by omitting patients with more severe or atypical clini-
cal profiles, particularly since vital sign recording is often 
insufficient in highly urgent cases [22–24]. This limita-
tion may affect the model’s overall performance and 
restrict the generalizability of our findings. Although we 
employed an iterative imputation method with missing 

Fig. 3 Scatterplots comparing three prediction model outputs with true vital sign values. Scatterplots comparing the helicopter contact values, rate of 
change predictions, and neural network (NN) predictions with the true values for heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure 
(DBP), respiratory rate (RR), and Glasgow Coma Scale (GCS) scores. The NN model shows higher accuracy, with values closer to the diagonal line
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indicators to mitigate the impact of missing data and 
preserve inter-variable correlations, this approach may 
not fully capture the underlying variability or all critical 
clinical nuances. Importantly, sensitivity analyses using 
only complete cases revealed similar trends in model 
performance, supporting the robustness of our imputa-
tion strategy despite the high missing rate. Future studies 
should explore alternative or additional methods for han-
dling missing data to further validate these results. More-
over, recent studies have demonstrated that advances in 
digital technology, such as automated vital sign capture 
and real-time data transmission, can significantly reduce 
data loss and transcription errors in prehospital settings 
[35]. These innovations hold promise for enhancing data 
completeness and, ultimately, the reliability of predic-
tive models in emergency care. Second, treating RR and 
GCS scores as continuous variables, despite their inher-
ently discrete nature, may have reduced prediction accu-
racy. Because these scores are typically recorded as whole 
numbers with specific clinical thresholds, alternative 
modeling approaches (for example, ordinal regression 
or categorical analysis) might better capture their true 
distribution and clinical significance, thereby improving 
predictive performance [36]. Third, our intervention data 
were limited to the presence or absence of tracheal intu-
bation. All HEMS interventions were treated uniformly 
because the database lacked precise timing for prehos-
pital interventions. Tracheal intubation was selected as 
the sole intervention parameter since, following intuba-
tion (often with sedation), the GCS remains unchanged, 
and the respiratory rate reflects ventilatory support. 
Therefore, we were unable to fully evaluate the impact of 
other interventions, such as intravenous fluid administra-
tion or thoracostomy. The outcomes in intubated cases 
should be interpreted with caution. Fourth, advanced 
NNs have a low interpretability owing to their black-box 
nature. Interpretability is crucial for model adoption in 
medical fields; therefore, future work should consider 
incorporating interpretable methods such as attention 
mechanisms or feature importance analyses. Fifth, the 
complexity of the model poses challenges for immediate 
clinical applications in terms of computational resources 
and inference time. Real-time responses are required in 
emergency settings, necessitating model simplification 
and inference speed optimization for practical imple-
mentation. Finally, because the study targeted cases with 
specific interventions in a limited region, external valida-
tion in other regions or with different intervention condi-
tions is required to assess the generalizability.

Conclusions
The multi-output regression model developed in this 
study demonstrated high accuracy in predicting the vital 
signs upon hospital arrival in patients who underwent 

interventions from both GEMS and HEMS. Improv-
ing the prediction accuracy will provide the foundation 
for rapid emergency responses by optimizing medical 
resources and preparing care plans in advance.
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