Skip to main content

Table 5 The optimal parameters of the ML algorithms

From: Predicting severity of acute appendicitis with machine learning methods: a simple and promising approach for clinicians

Algorithms

Data set 1

Data set 2

k-NN

n_neighbors = 13, metric = minkowski

n_neighbors = 19, metric = manhattan

DT

max_depth = 4, criterion = gini

max_depth = 3, criterion = gini

LR

C = 4.037, penalty = l1, solver = liblinear

C = 0.498, penalty = l2, solver = newton-cg

SVM

C = 1.0, gamma = scale, kernel = poly

C = 0.1, gamma = scale, kernel = poly

MLP

hidden_layer_sizes = 2, max_iter = 1000, solver = lbfgs

hidden_layer_sizes = 16, max_iter = 1000, solver = lbfgs

GNB

var_smoothing = 0.04

var_smoothing = 0.196