Skip to main content

Table 3 Prediction ability of seven machine learning models and reference for internal validation at CMUH

From: Using machine learning and natural language processing in triage for prediction of clinical disposition in the emergency department

 

AUROC

p-value*

BS

F1 score

Accuracy

Sensitivity

PPV

Specificity

NPV

Primary outcome

 LGB

0.937

-

0.089

0.494

0.954

0.589

0.425

0.968

0.983

 CatBoost

0.935

0.06

0.089

0.479

0.950

0.602

0.398

0.964

0.984

 GB

0.932

0.06

0.094

0.479

0.951

0.584

0.406

0.966

0.983

 LR

0.928

< 0.05

0.114

0.415

0.924

0.703

0.294

0.933

0.987

 RF

0.926

0.50

0.072

0.500

0.955

0.591

0.433

0.969

0.983

 ET

0.919

< 0.05

0.072

0.484

0.953

0.575

0.417

0.968

0.983

 LR-TTAS

0.858

< 0.05

0.095

0.000

0.962

0.000

0.000

1.000

0.962

 EPs

N/A

N/A

N/A

0.361

0.942

0.550

0.268

0.954

0.986

Secondary outcome

 RF

0.847

-

0.089

0.580

0.782

0.655

0.519

0.820

0.889

 ET

0.843

< 0.05

0.089

0.575

0.782

0.643

0.521

0.824

0.886

 LGB

0.841

0.06

0.106

0.600

0.786

0.701

0.525

0.811

0.901

 CatBoost

0.839

< 0.05

0.106

0.600

0.791

0.682

0.535

0.824

0.897

 GB

0.829

< 0.05

0.111

0.586

0.782

0.675

0.518

0.814

0.894

 LR

0.800

< 0.05

0.129

0.553

0.758

0.654

0.480

0.789

0.885

 LR-TTAS

0.666

< 0.05

0.117

0.171

0.771

0.103

0.499

0.969

0.784

 EPs

N/A

N/A

N/A

0.498

0.674

0.626

0.413

0.691

0.842

  1. AUROC Area under receiver-operator curve, BS Brier score, CMUH China Medical University Hospital, EPs Emergency physicians, ET Extremely Randomized Trees, GB Gradient Boosting, LGB Light Gradient Boosting Machine, LR Logistic Regression, LR-TTAS Logistic Regression-Taiwan Triage Acuity scale, NPV Negative predictive value, PPV Positive predictive value, RF Random Forest
  2. *The p-values in the table were derived using the DeLong test, which involved pairwise comparisons of each model’s AUROC with that of the model ranked directly above it in performance