Skip to main content

Table 2 Comparison of predicted vital sign values at hospital arrival with actual measurements across different models

From: Improving prediction accuracy of hospital arrival vital signs using a multi-output machine learning model: a retrospective study of JSAS-registry data

 

Variable

HR

SBP

DBP

RR

GCS

HEMS contact values

MAE

7.3

18.8

13.5

2.9

0.38

R2

0.63

0.1

-0.18

0.1

0.84

SD

11

25.9

18.4

4.3

1.3

Spearman correlation

0.83

0.65

0.52

0.54

0.93

Change-based predicted values

MAE

13.9

29.8

22.8

5.9

0.99

R2

-0.68

-1.5

-2.7

-2.7

0.42

SD

23.5

43

32.5

8.7

2.4

Spearman correlation

0.68

0.51

0.37

0.42

0.77

NN predicted values

MAE

7.1

15.7

10.8

2.9

0.62

R2

0.69

0.42

0.29

0.32

0.84

SD

10

20.8

14

3.9

1.4

Spearman correlation

0.83

0.68

0.55

0.54

0.86

  1. Table 2 compares three methods for predicting hospital arrival vital signs: (1) HEMS contact values (initial HEMS measurements), (2) change-based predictions (extrapolated from GEMS and HEMS data), and (3) NN predictions from our multi-output regression model. Performance metrics (MAE, R², SD of residuals, and Spearman's correlation) were calculated by comparing each method’s predictions with the actual hospital arrival values. HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; RR, respiratory rate; GCS, Glasgow coma scale; MAE, mean absolute error; R2, R-squared; SD, standard deviation; Spearman Correlation, Spearman's rank correlation coefficient